现代图论Ⅲ(哈密顿圈和欧拉回路、BEST定理)

1.3节 Hamilton Cycles and Euler Circuits 哈密顿圈和欧拉回路

本篇简要的介绍了概念和相关定理。首先明确一下,下面讨论有三种图:无向图(undirected graph),有向图(directed graph)以及(有向)多重图((directed) multigraph),多重图允许自己指向自己的边(loop)。多重图的基图(underlying graph)就是删去了这些边的图。
  1. 定义:

    如果图G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径(Euler path)。如果一个回路是欧拉路径,则称为欧拉回路(Euler circuit);

    如果G中的圈C恰好经过每一个顶点一次,则称圈C是一个哈密顿圈(Hamilton Cycles)。

  2. 定理:

    1. 众所周知,欧拉回路的研究始自Konigsberg七桥问题。Euler指出,(TH12)
      连通图G有欧拉迹iff x、y为唯二奇度顶点,以及G为欧拉图iff顶点全为偶数
      对有向图(多重图),则需要入度等于出度。这一定理可用割圈的方式证明。事实上,每一个欧拉回路都是一些不相交之圈的并。

    2. 关于Hamilton圈的TH11指出, 完 全 图 K n 能 被 分 割 成 不 相 交 的 H a m i l t o n 圈 i f f n 是 奇 数 , 能 被 分 割 成 不 相 交 的 H a m i l t o n 路 i f f n 是 偶 数 完全图K_n能被分割成不相交的Hamilton圈 iff n 是奇数,能被分割成不相交的Hamilton路iff n是偶数 KnHamiltoniffnHamiltoniffn这一定理可以归纳的证明。

    3. TH13(Best定理):这一定理对入度等于出度的多重欧拉图适用。对图G有如下等式成立:
      s ( G ) = t i ( G ) ∏ j = 1 n ( d + ( v j ) − 1 ) ! s(G) = t_i(G)\prod_{j=1}^n(d^+(v_j)-1)! s(G)=ti(G)j=1n(d+(vj)1)!
      TH13是欧拉回路个数与生成树之间的关系。
      其中, s ( G ) 是 G 欧 拉 回 路 的 个 数 s(G)是G欧拉回路的个数 s(G)G
      t i ( G ) 是 ( o r i e n t e d t o w a r d s ) 朝 向 i 的 生 成 树 的 个 数 t_i(G)是(oriented\quad towards)朝向i的生成树的个数 ti(G)(orientedtowards)i
      朝向i的生成树(内向树)定义为: v i    i s    t h e    “ r o o t ” .    F o r    e v e r y    j ! = i , t h e    u n i q u e    p a t h    f r o m    v i    t o    v j    i s    o r i e n t e d    t o w a r d s    v i . v_i\; is\; the\; “root”.\; For\; every\; j!=i, the\; unique\; path\; from\; v_i\; to\; v_j\; is\; oriented\; towards\; v_i. viistheroot.Foreveryj!=i,theuniquepathfromvitovjisorientedtowardsvi.下图是一个例子:
      内向树
      我们详细说明一下。
      E i \Epsilon_i Ei是从 x i x_i xi点开始并结束的欧拉迹, E \Epsilon E是欧拉回路。对欧拉迹来说每次出发走不一样的点是不同的(回路则是一样的),有 ∣ E ∣ ∗ d + ( v i ) = ∣ E i ∣ |\Epsilon|*d^+(v_i)=|\Epsilon_i| Ed+(vi)=Ei
      构造T,边为 e 2 , . . . , e n , 其 中 e i 是 一 条 欧 拉 迹 S 中 最 后 一 次 离 开 v i 的 那 条 边 e_2,...,e_n,其中e_i是一条欧拉迹S中最后一次离开v_i的那条边 e2,...,eneiSvi
      立刻有 d + ( v 1 ) = 0 d^+(v_1)=0 d+(v1)=0 d + ( v j ) = 1 d^+(v_j)=1 d+(vj)=1
      我们可以证明T是 v 1 v_1 v1的内向树。为此,先证明是树:反证法。
      如果有圈,那么由于 d + ( v 1 ) = 0 d^+(v_1)=0 d+(v1)=0,圈不包含v1。对着个圈中的点来说,由于所有点的出度都是1,考察进入这个圈的点 v l v_l vl,由于欧拉迹最终会遍历这个圈的边,所以最后会回到 v l v_l vl。于是就和定义相悖了。
      对于每个点,有路径 v k v k − 1 . . . v 1 v_kv_{k-1}...v_1 vkvk1...v1。没有圈就说明,总是不再返回的。于是 v 2 v 1 是 e 2 v_2v_1是e_2 v2v1e2…对每个点依次类推。于是, T ∈ T 1 T\in\Tau_1 TT1
      建立 Φ 1 : E 1 → T 1 \Phi_1: E_1\rightarrow \Tau_1 Φ1:E1T1的映射: Φ 1 ( S ) = T . \Phi_1 (S)=T. Φ1(S)=T.如果有T,怎么建立S?采取这个策略:
      1. 从 v 1 出 发 。 走 一 条 尚 未 走 过 的 边 。 如 果 没 有 边 , 就 停 止 。 1. 从v_1出发。走一条尚未走过的边。如果没有边,就停止。 1.v1
      2. 如 果 到 达 v j , 从 非 e j 的 边 离 开 。 最 后 , 再 走 e j 。 2. 如果到达v_j,从非e_j的边离开。最后,再走e_j。 2.vjejej
      既然 d + ( v j ) = d − ( v j ) d^+(v_j)=d^-(v_j) d+(vj)=d(vj),这一过程确实能给我们一条欧拉迹。
      于是: ∣ Φ − 1 ( T ) ∣ = d + ( v 1 ) ! ∏ j = 2 n ( d + ( v j ) − 1 ) ! . |\Phi^{-1}(T)|=d^+(v_1)!\prod_{j=2}^n(d^+(v_j)-1)!. Φ1(T)=d+(v1)!j=2n(d+(vj)1)!. ∣ E ∣ ∗ d + ( v i ) = ∣ E i ∣ |\Epsilon|*d^+(v_i)=|\Epsilon_i| Ed+(vi)=Ei
      得 到 ∣ E ∣ = ∣ T 1 ∣ ∏ j = 1 n ( d + ( v j ) − 1 ) ! Q . E . D . 得到|E| = |\Tau_1|\prod_{j=1}^n(d^+(v_j)-1)!\quad Q.E.D. E=T1j=1n(d+(vj)1)!Q.E.D.后部分是个常量。这样有
      [ 推 论 ] ∣ T 1 ∣ = ∣ T 2 ∣ = . . . = ∣ T n ∣ . [推论]\quad\qquad |\Tau_1|= |\Tau_2|=...= |\Tau_n|. []T1=T2=...=Tn.
      这一推论也是不直观的、很深刻的结论。

  3. randomly Eulerian:这样一种图,即存在一个顶点,从这一点出发遵循方法:走没走过的边,就一定能走出一条欧拉回路。也就是博物馆展览的设计
    例如,随机欧拉图
    在习题中给出了充要条件
    图G是x点的随机欧拉图,iff G有一个欧拉回路且x被每一个圈包含在内。必要性:反证。走那个不包含x的圈符合规则。充分性:欧拉回路可以视作多个边不相同圈的交(定理1!)。

  4. TH14 G G G是无限多边的连通多重图,则 G G G有一条双向欧拉迹 iff 满足:1. E E E可数 2. 边的度是偶数或无限大 3. 每个无限边的子图 G ′ ( V , E ′ ) G'(V,E') G(V,E), G − E ′ G - E' GE有至多两个无限连通分量。(进一步地,若 G ‘ G‘ G各点均为偶数度, G − E ′ G - E' GE有一个连通分量)。这条定理下篇中我们证一下。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值