具有Slater类型轨道的双重混合DFT计算

在一个包含1,644个数据点的综合数据库中,涵盖了主族以及过渡金属化学的多个方面,我们评估了60个密度泛函近似(DFA)的性能,其中包括36个双杂种(DH)。所有计算均使用具有三重ζ(TZ)质量的Slater类型轨道(STO)基集以及用于KS矩阵的交换和库仑项的恒等身份方法的高效成对原子分辨率(PARI- K和PARI- Ĵ,并用于评估MP2能量校正(PARI-MP2)。采用二次缩放SOS-AO-PARI-MP2算法,基于自旋对立缩放(SOS)MP2逼近的DH相对于大分子数据库进行了基准测试。
我们评估了B3LYP以及DH B2GP‐PLYP的STO / PARI计算的准确性,并表明组合的基本集和PARI误差与使用著名的def2‐TZVPP高斯型基本集获得的结果相当。结合整体密度拟合。虽然四倍 ζ由于数值问题,目前(QZ)计算对于PARI‐MP2不可行,我们表明在TZ级别上,已复制了用于对DFA进行分类的雅各布阶梯。但是,尽管最好的DH比最好的DH更为准确,但与QZ级别上常见的改进相比,改进并不明显。对于需要非常高的准确度才能获得定性正确结果的有机分子和非共价相互作用的构象异构体,DHs仅比杂化剂有很小的改进,而它们在热化学,动力学,过渡金属化学和对应变有机体系的描述方面仍然很出色。根据著名的DFA的Jacob’s阶梯分类方案[,通常最准确,最可靠的功能应该是DH-DFA。确实,Goerigk,Grimme,Martin及其同事对全面的GMTKN55 数据库进行了严格的验证,证实了这一推测。
不幸的是,混合WF理论转化为KS-DFT不仅以更高的精度随之而来也有增加的计算成本。混合功能的KS矩阵的计算通常与N 4缩放操作计数相关联,[N 5是系统大小N的函数,而用于评估规范MP2相关能量的CPU时间随N 5的增加而增加。
鉴于这些缩放特性,对于这两种任务而言,具有成本效益的算法的可用性对于将杂化和DH-DFA常规应用于大分子至关重要。对于库仑(J)和交换(K)项,利用4级电子排斥积分(ERI)张量中的稀疏性是降低用于混合功能的KS矩阵构造的计算成本的关键。基于积分初筛技术算法提供良好的可扩展性,但是从高前因子受到影响。为了规避这个问题,现代的代码还依靠密度接头(DF) ]近似是评估J项的有效方法,尤其是与J引擎技术结合使用时。全球密度拟合为效率较低的ķ -term和有前途的方法,以实现更好的性能是伪光谱的方法,所述辅助密度矩阵方法]或局部不同口味DF(LDF)]的近似。后一种方法的最有希望的变体可能是标识(PARI)近似的一对原子分辨率(称为PARI- ķ当施加到ķ -term])。在Baerends等人的治疗之后,采用了最极端的LDF方法。为J项,AO的每一对乘积在一组辅助基函数中展开,这些辅助基函数以与目标基元对相同的两个原子为中心。
为了加快对MP2能量的评估,DF是唯一被广泛使用的方法。]通过大小中的至少一个以便减少规范实现的前因子,它保留其Ñ 5缩放。然而,依靠动力电子相关的短rangedness许多MP2算法缩放减小,采用局部分子轨道(MO),依赖于碎片接近或在AO基础评价MP2能量和在ERI张量利用稀疏性已经制定出来。
遵循后一种方法,我们已经证明PARI方法不仅可以用来加速KS矩阵的构建,而且可以有效地计算MP2相关能量。虽然我们已经证明基于MO的PARI-MP2算法可以轻松地与DF-MP2竞争,但我们还制定了Spin相反比例缩放[(SOS)-AO-PARI-MP2算法,通过二次缩放操作计数,可以获取准确的SOS-MP2能量。实施在所述基于STO-阿姆斯特丹密度泛函(ADF)的代码中,SCF,虽然广泛经由PARI-加速ķ代表使用TZ质量的基础集对数百个原子的分子进行单点SOS-MP2计算的瓶颈(CPU时间和内存)。我们得出的结论是,只要混合计算可行,这也使量子化学家能够进行DH计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值