我们知道在二叉树的遍历中,如果知道了二叉树的先序遍历顺序和中序遍历顺序,或者后序遍历顺序和中序遍历顺序,都可以唯一确定一棵二叉树,而不知道中序遍历顺序,只知道前序遍历的和后序遍历的顺序,是不能唯一确定一棵二叉树的。例如,我们如果知道一棵二叉树的前序遍历顺序为“a d b g c e f h”,后序遍历为"g b d e h f c a",则我们可以得到如下的两棵二叉树(可能还有其他类型的二叉树)
以上两棵二叉树的前序遍历顺序都为“a d b g c e f h”,后序遍历都为"g b d e h f c a",而如果我们只知道前序遍历顺序为“a d b g c e f h”,中序遍历为"d g b a e c h f",则我们就能够唯一确定第一课二叉树了。可见中序遍历发挥了重要的作用,因此,在重构二叉树的时候,我们也是重要对中序遍历下手。
二叉树结点定义如下:
struct Node{
char data;
Node* left;
Node* right;
};
我们知道二叉树是一种递归的结构,因此我们可以用递归的算法重构二叉树。在前序遍历+中序遍历中,假如前序遍历顺序为“a d b g c e f h”,中序遍历为"d g b a e c h f",我们知道前序遍历的第一个即“a”为跟结点,于是我们我们在中序中找到"a",而在中序中"d g b
a e c h f"得到"a"的位置,则可以确定"a"的左边"d g b"为根结点的左孩子,"e c h f"则为根节点的右孩子,于是做递归则可以重构出一棵唯一的二叉树。
前序遍历+中序遍历代码如下:
Node * PreInCreateTree(char *mid,char *pre,int len)//mid表示中序遍历顺序,pre表示前序遍历顺序,len表示二叉树结点数
{
if(len == 0)
return NULL;
int i = 0;
while( *pre != mid[i])
++i;
Node *root = new Node();
root->data= *pre;
root->left = PreInCreateTree(mid, pre+1, i);
root->right = PreInCreateTree(mid+i+1, pre+i+1, len-i-1);
return root; //返回根结点指针
}
后序遍历+中序遍历代码如下:
Node* InPostCreateTree(char *mid,char *post,int len){ <span style="font-family: Arial, Helvetica, sans-serif;">//mid表示中序遍历顺序,post表示后序遍历顺序,len表示二叉树结点数</span>
if(len == 0)
return NULL;
int i=len-1;
while( post[len-1] != mid[i] )
--i;
Node *root = new Node();
root->data = post[len-1];
root->left = InPostCreateTree(mid,post,i);
root->right = InPostCreateTree(mid+i+1,post+i,len-i-1);
return root; //返回根结点指针
}