机器学习面试:标准化和归一化

这个真的是让人困惑,分别解释一下,首先说一下方差和均值

μ = E ( x ) σ = D ( x ) \begin {aligned} \mu&=E(x) \\ \sigma &= \sqrt{D(x)} \end {aligned} μσ=E(x)=D(x)

1. 归一化

为什么叫归一化,归一化顾名思义就是将数据转换到0~1之间
x ′ = x − x m i n x m a x − x m i n = x x m a x − x m i n − x m i n x m a x − x m i n = k x − c x'=\frac{x-x_{min}}{x_{max}-x_{min}}=\frac{x}{x_{max}-x_{min}}-\frac{x_{min}}{x_{max}-x_{min}}=kx-c x=xmaxxminxxmin=xmaxxminxxmaxxminxmin=kxc
从上面的数学公式非常容易知道,我们把原始数据转化到0~1之间了,然后我们计算均值和方差
μ ′ = E ( x ′ ) = E ( k x − c ) = k E ( x ) − c = k μ − c σ ′ = D ( x ′ ) = D ( k x − c ) = k 2 D ( x ) = k σ \begin {aligned} \mu'=E(x')=E(kx-c)=kE(x)-c=k\mu-c\\ \sigma^{'}=\sqrt{D(x')}=\sqrt{D(kx-c)}=\sqrt{k^2D(x)}=k\sigma \end {aligned} μ=E(x)=E(kxc)=kE(x)c=kμcσ=D(x) =D(kxc) =k2D(x) =

2. 标准化

为什么叫标准化呢,标准化的意思就是说把数据变成均值为0,方差为1的数据。(如果数据本身为正态分布,标准化之后就是标准的正态分布)
x ′ = x − μ σ = k x − c x'=\frac{x-\mu}{\sigma}=kx-c x=σxμ=kxc
看到奇怪的地方了吗,这两个抽象后的形式竟然是一样的,想想这不是废话吗,我们再看看均值和方差。
μ ′ = E ( x ′ ) = E ( x − μ σ ) = E ( x ) − μ σ = μ − μ σ = 0 σ ′ = D ( x ′ ) = D ( x − μ σ ) = D ( x ) σ 2 = D ( x ) σ = 1 \begin {aligned} \mu'=E(x')=E(\frac{x-\mu}{\sigma})=\frac{E(x)-\mu}{\sigma}=\frac{\mu-\mu}{\sigma}=0 \\ \sigma'=\sqrt{D(x')}=\sqrt{D(\frac{x-\mu}{\sigma})}=\sqrt{\frac{D(x)}{\sigma^2}}=\frac{\sqrt{D(x)}}{\sigma}=1 \end {aligned} μ=E(x)=E(σxμ)=σE(x)μ=σμμ=0σ=D(x) =D(σxμ) =σ2D(x) =σD(x) =1
看到了吧,如果我们做了标准化,就会把数据转换成均值为0,方差为1的数据。

3. 极其愚蠢

数据的均值为0,方差为1,这个数据就是标准正态分布吗???肯定不是啊,但是我们做完标准化之后数据的描述变为均值为0,方差为1,我们就认为这是正态分布了,这是极其愚蠢的。注意,线性变换是不会改变数据分布的。

原来是什么分布,z-score变换之后还是原来的分布。因为z-score做的事情是将数据整体偏移(减法)保证了均值为0,随后进行压缩(除法),保证了方差为1。

当数据做了非线性变换之后,才可能改变数据的分布。

思维惯性

为什么会一直觉得标准化会变成 N ( 0 , 1 ) N(0,1) N(0,1)正态分布呢,这是因为,自然界中的数据通常是服从正态分布的,所以标准化之后不会有什么大的改变,反而会把数据压缩大一定的范围,解决量纲不一致问题。

标准化和归一化,请勿混为一谈,透彻理解数据变换

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值