ddp训练流程-pytorch教程

总结

这边博客并不是教会如何使用dpp,只是记录一下自己使用dpp时遇到的一些困惑

  1. 分布式节点如何知道彼此并通信。每个节点启动训练任务需要设置主节点的ip:port,通过跟主节点通信来启动服务。
  2. 是不是每个节点都要执行python程序。是的,写好训练代码后,每个节点都需要执行python命令,但是一般平台会帮我们管理分布式服务,自动把脚本分发到各个节点,并执行python成勋,才会产生不需要每个节点执行python代码的错觉
  3. 如果忘记在某个节点执行python命令,结果会怎样。ddp会阻塞在初始化的位置,一直等到有world_size进程为止,这个就是靠主节点来跟踪进程数(我猜的)
  4. 每个节点是不是都需要有完备的数据。是的,如果使用ddp的DistributedSampler来获取数据,那么一定要保证每个节点都有完整的数据,要不然根据indics无法获取正确的数据。
  5. 每个节点获取的mini-batch数据如何保证不重合。不同节点设置相同的随机数种子,这样采样的batch就是一摸一样的,然后再根据各自的rank来从batch中取出自己的mini-batch。

1. pytorch如何初始化分布式训练

核心函数如下,下面具体分析一下

    torch.distributed.init_process_group(backend=dist_backend,
                                         init_method=init_method,
                                         world_size=world_size,
                                         rank=rank)
  1. backend就是通信协议,使用分布式时,在梯度汇总求平均的过程中,各主机之间需要进行通信。因此,需要指定通信的协议架构等。gpu是nccl,cpu是gloo。
  2. init_method 指定当前进程组初始化方式,也就是获取其他节点的信息,进行同步
  3. world_size是进程的个数,比如我们有3台机器,每台机器有2个gpu,那么就有3x2=6个进程
  4. rank则表示进程的标识

2. 我们怎么知道要使用哪几台机器进行训练的?

假如在同一个局域网内有6台机器,其中三台机器训练bert,另外三台训练gpt,每台机器是如何知道其他节点跟自己是否训练的是同一个任务呢,更准确的是说不同进程之间是如何保证自己是同一个进程组的?同一个机器可以使用同一进程组进行标识,但是训练任务通常会分散在不同的机器上。一种非常简单的方法就是给同一个训练任务的机器分配唯一的id,id相同的时候大家进行通信,id不同时则不通信。pytorch使用的唯一标识是ip+port,也就是说同一个训练任务大家使用同一个通信地址ip:port
不同任务即使使用了同一个机器,即ip相同,也可以通过port来进行区分,可以看到192.168.1.2这台机器上跑了两个任务(这台机器有两个gpu,或者资源不够,用户就是想要指定两个进程来训练不同的任务),我们依然可以通过port来区分这两个任务,

训练任务ip地址ip+port 标识启动
bert : master192.168.1.2192.168.1.2:5003python train.py --master_addr 192.168.1.2 --master_port 5003
bert : slave192.168.1.3192.168.1.2:5003python train.py --master_addr 192.168.1.2 --master_port 5003
bert : slave192.168.1.4192.168.1.2:5003python train.py --master_addr 192.168.1.2 --master_port 5003
gpt : master192.168.1.2192.168.1.2:5004python train.py --master_addr 192.168.1.2 --master_port 5004
gpt : slave192.168.1.6192.168.1.2:5004python train.py --master_addr 192.168.1.2 --master_port 5004
gpt : slave192.168.1.7192.168.1.2:5004python train.py --master_addr 192.168.1.2 --master_port 5004

总而言之,不同任务之间是通过ip和port来作为唯一标识区分的。我们启动任务的时候指定这个ip+port,这个ip:port将会作为服务的主节点

3. 如何根据标识进行初始化(init_method)

torch获取这个唯一标识的方式也有两种(其实是三种,文件系统共享我没用过)

  1. tcp:直接指定tcp的ip和端口,init_method='tcp://192.168.1.2:5003'

  2. env : 我们获取到输入参数master_addr和master_port之后,设置环境变量

    os.environ['MASTER_ADDR'] = '192.168.1.2'
    os.environ['MASTER_PORT'] = '5003'
    

    然后就可以通过指定init_method="env://"来初始化服务了。很多博客都说要在环境变量中写入MASTER_ADDR和MASTER_PORT,我当时的理解是pytorch会直接把这两个变量写入到系统环境中

    export MASTER_ADDR="192.168.1.2"
    export MASTER_PORT="5003"
    

    然后就变得非常非常的困惑,有那么多的任务,如果大家都把自己的配置写到系统中不就存在了冲突了吗,最重要的是我在系统中根本就没看到这两个变量。后来才意识到,python会拷贝一份环境变量, os.environ['MASTER_ADDR'] = '192.168.1.2'其实添加的是拷贝环境变量的值,而不是真的在环境变量中指定了这个值。

    所谓的会自动从环境变量中获取MASTER_ADDR和MASTER_PORT,其实都是这个拷贝的环境变量,修改的也是这个拷贝值。python在使用多进程的时候,会先从本地拷贝一份环境变量,然后这份环境变量再分发给各个进程

    可以试试,先启动一个python代码设置环境变量

    	import os
    	os.environ['MASTER_ADDR'] = '192.168.1.2'
    	print(os.environ['MASTER_ADDR']) # '192.168.1.2'
    

    再启动一个python代码读取环境变量

    import os
    print(os.environ['MASTER_ADDR']) # 空
    

    到系统环境中查看

    echo $master #空
    

4. 如何获取进程的唯一标识rank

world_size很好计算,这个是自己指定的,例如我们使用3台机器,每个节点有4个gpu,全部使用的话world_size=3*4=12,很直接world_size=nnodes * nproc_per_node。其中nnodes就是我们指定的节点个数,nproc_per_node就是单个节点执行的进程数,通常是每个机器gpu的数量。如果是cpu训练的话,就是cpu的个数,通常每台机器只有一个cpu。
上面讲了通过ip+port我们可以确定每个任务的唯一标识,通常一个任务我们会进行多几多卡训练,即启动多个进程。每个进程都有自己的唯一标识,这个就是rank。有趣的是,pytorch的进程id并不是根据全部机器或者world_size来分配的每个进程的rank的,假如我们有3个节点,每个节点4张卡,理想情况是我们执行pytorch的dpp初始化后,每个gpu都有一个rank值,依次递增到world_size-1

ipgpu1gpu2gpu3gpu4
192.168.1.20123
192.168.1.34567
192.168.1.4891011

但实际上,pytorch只会根据每个节点自身确定一个local_rank值,每次都是从0开始增加的

ipgpu1gpu2gpu3gpu4
192.168.1.20123
192.168.1.30123
192.168.1.40123

所以为了获取全局的rank需要我们手动做一次转换rank=node_rank*n_gpu+local_rank

ipnode_rankgpu1gpu2gpu3gpu4
192.168.1.200123
192.168.1.311*4+01*4+11*4+21*4+3
192.168.1.422*4+02*4+12*4+22*4+3

node_rank是我们给每个节点的编号。其实在这里有一个问题,可不可以一个节点使用2个gpu,一个节点使用3个gpu呢?这个时候该怎么获取每个进程的id呢?
还有一个问题需要关注,如果使用的init_method="env://",那么也需要将rank和world_size也写入到环境变量中

	os.environ['RANK'] = rank
	os.environ['WORLD_SIZE'] = 12

5. 如何实现

import os
import argparse
import torch
import random
import numpy as np
import torch.distributed as dist

def setup_new_process(local_rank, callee, args):
    rank = args.node_rank * args.nproc_per_node + local_rank
    world_size = args.nnodes * args.nproc_per_node
    random.seed(rank)
    np.random.seed(rank)
    torch.manual_seed(rank)
    torch.cuda.manual_seed_all(rank)
    dist_backend = 'gloo'
    init_method = "env://"
    if args.use_env:
        os.environ['MASTER_ADDR'] = args.master_addr
        os.environ['MASTER_PORT'] = args.master_port
        os.environ['RANK'] = str(rank)
        os.environ['WORLD_SIZE'] = str(world_size)
    else:
        init_method = f"tcp://{args.master_addr}:{args.master_port}"

    if torch.cuda.is_available():
        torch.cuda.set_device(local_rank)
        torch.cuda.empty_cache()
        # 通信后端,nvidia GPU推荐使用NCCL
        if torch.distributed.is_nccl_available():
            dist_backend = 'nccl'
    print(f'start init process: rank = {rank}')
    dist.init_process_group(backend=dist_backend,
                                         init_method=init_method,
                                         world_size=world_size,
                                         rank=rank)

    callee(args)

import torch.nn as nn
import torch.nn.functional as F
import torch


def train(args):
    if dist.is_initialized():
        rank = dist.get_rank()
        print(f"rank = {rank} | strat train.......")


def main(callee):
    parse = argparse.ArgumentParser()
    parse.add_argument('--use_env', action="store_true")
    parse.add_argument('--master_addr', type=str, default="127.0.0.1")
    parse.add_argument('--master_port', type=str, default="5003")
    parse.add_argument('--nproc_per_node', type=int, default=0)
    parse.add_argument('--node_rank', type=int, default=0)
    parse.add_argument('--nnodes', type=int, default=1)

    args = parse.parse_args()
    if args.nproc_per_node == 0:
        if torch.cuda.device_count() > 0:
            args.nproc_per_node = torch.cuda.device_count()
        else:
            args.nproc_per_node = os.cpu_count()

    torch.multiprocessing.spawn(setup_new_process, nprocs=args.nproc_per_node,
              args=(callee, args), join=True)

if __name__ == '__main__':
    main(train)

唯一没有解释的是torch.multiprocessing.spawn这个函数,这个函数用来启动分布式训练,本质就是创建多个进程。我的本地有4个cpu,所以我这里直接创建了4个进程来执行,注意nproc_per_node是单个节点进程数,也就是单机的gpu个数,启动多进程的时候,我们发现并没有传递local_rank这个参数,这是因为使用torch.multiprocessing.spawn会自动传入这个参数,并且是递增,,从0到nproc_per_node。

start init process: rank = 0
start init process: rank = 1
start init process: rank = 2
start init process: rank = 3
rank = 0 | strat train…
rank = 3 | strat train…
rank = 2 | strat train…
rank = 1 | strat train…

如果我们有多个节点,则需要在每个节点执行脚本

ip命令
192.168.1.2python train.py --master_addr 192.168.1.2 --master_port 5003 --node_rank=0 --nnodes=3
192.168.1.3python train.py --master_addr 192.168.1.2 --master_port 5003 --node_rank=1 --nnodes=3
192.168.1.4python train.py --master_addr 192.168.1.2 --master_port 5003 --node_rank=2 --nnodes=3

前面只是启动了分布式训练而已,我们创建一个小模型来试试ddp,直接使用DistributedDataParallel对模型进行进行一层包装即可使用dpp

torch.nn.parallel.DistributedDataParallel(module, 
                                          device_ids=None, 
                                          output_device=None, 
                                          dim=0, 
                                          broadcast_buffers=True, 
                                          process_group=None, 
                                          bucket_cap_mb=25, 
                                          find_unused_parameters=False, 
                                          check_reduction=False)

我们写一个小的demo

def train(args):
    model = nn.Linear(5, 1, bias=False).to(args.rank)
    if torch.distributed.is_initialized():
        rank = torch.distributed.get_rank()
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank])
        print(f"rank = {rank} | start train.......")
    
    optimizer = torch.optim.Adam(model.parameters(),lr=0.01)

    for _  in range(10):
        optimizer.zero_grad()
        py = model(torch.rand(32,5).to(rank)
        loss = F.mse_loss(py,torch.rand(32,1).to(rank))
        print(loss)
        loss.backward()
        optimizer.step()

在单机CPU的模式下发现

raise ValueError(ValueError: DistributedDataParallel device_ids and output_device arguments only work with single-device/multiple-device GPU modules or CPU modules, but got device_ids [2], output_device None, and module parameters {device(type='cpu')}.

抛出了一个异常,上面这个代码主要是执行在gpu上的,to(rank)的意思就是把数据或模型加载到编号为rank的gpu上,我本地没有gpu,所以不能使用to(rank),其次torch.nn.parallel.DistributedDataParallel也会把模型输出到某个device_id上(同样要求在gpu),当使用cpu训练的时候需要将device_ids和output_device都设置为None

device_ids
int 列表或 torch.device 对象,用于指定要并行的设备。对于数据并行,即完整模型放置于一个 GPU 上(single-device module)时,需要提供该参数,表示将模型副本拷贝到哪些 GPU 上。
对于模型并行的情况,即一个模型,分散于多个 GPU 上的情况(multi-device module),以及 CPU 模型,该参数比必须为 None,或者为空列表。
output_device
int 或者 torch.device,对于 single-device 的模型,表示结果输出的位置。
对于 multi-device module 和 GPU 模型,该参数必须为 None 或空列表。

def train(args):
    device = torch.device(f"cuda:{args.local_rank}" if torch.cuda.is_available() else "cpu")
    
    model = nn.Linear(5, 1, bias=False).to(device)
    
    for name, params in model.named_parameters():
        print(f'before dpp : rank = {args.rank}, name = {name}, params = {params.tolist()}')
    
    if torch.distributed.is_initialized():
        if torch.cuda.is_available():
            model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
        else:
            model = torch.nn.parallel.DistributedDataParallel(model)
        print(f"rank = {args.rank} | strat train.......")
        
    for name, params in model.named_parameters():
        print(f'after dpp : rank = {args.rank}, name = {name}, params = {params.tolist()}')

    optimizer = torch.optim.Adam(model.parameters(),lr=0.01)

    for _  in range(10):
        optimizer.zero_grad()
        py = model(torch.rand(32,5).to(device))
        loss = F.mse_loss(py,torch.rand(32,1).to(device))
        loss.backward()
        optimizer.step()
    
    for name, params in model.named_parameters():
        print(f'finish dpp rank = {args.rank}, name = {name}, params = {params.tolist()}')

这里把模型的参数也打印出来了。代码中我们是直接使用随机数初始化每个网络的,因此可以看到每个进程的模型参数是不同的,但是训练结束之后可以看到,模型参数都变成了同一个

before dpp : rank = 0, name = weight, params = [[-0.0033482015132904053, 0.23990488052368164, -0.36807698011398315, -0.3291219472885132, -0.1722462773323059]]
before dpp : rank = 3, name = weight, params = [[-0.44340017437934875, -0.3527894914150238, -0.19154831767082214, -0.423104465007782, -0.025388896465301514]]
before dpp : rank = 1, name = weight, params = [[0.2304326891899109, -0.1973903477191925, -0.08669748902320862, 0.20990818738937378, -0.4210233688354492]]
before dpp : rank = 2, name = weight, params = [[0.10258638858795166, -0.10642534494400024, 0.12263882160186768, -0.022842705249786377, 0.1910441517829895]]
after dpp : rank = 2, name = module.weight, params = [[-0.0033482015132904053, 0.23990488052368164, -0.36807698011398315, -0.3291219472885132, -0.1722462773323059]]
after dpp : rank = 0, name = module.weight, params = [[-0.0033482015132904053, 0.23990488052368164, -0.36807698011398315, -0.3291219472885132, -0.1722462773323059]]
after dpp : rank = 3, name = module.weight, params = [[-0.0033482015132904053, 0.23990488052368164, -0.36807698011398315, -0.3291219472885132, -0.1722462773323059]]
after dpp : rank = 1, name = module.weight, params = [[-0.0033482015132904053, 0.23990488052368164, -0.36807698011398315, -0.3291219472885132, -0.1722462773323059]]
finish dpp rank = 0, name = module.weight, params = [[0.09621907025575638, 0.33785226941108704, -0.26929566264152527, -0.23034155368804932, -0.07334098219871521]]
finish dpp rank = 3, name = module.weight, params = [[0.09621907025575638, 0.33785226941108704, -0.26929566264152527, -0.23034155368804932, -0.07334098219871521]]
finish dpp rank = 1, name = module.weight, params = [[0.09621907025575638, 0.33785226941108704, -0.26929566264152527, -0.23034155368804932, -0.07334098219871521]]
finish dpp rank = 2, name = module.weight, params = [[0.09621907025575638, 0.33785226941108704, -0.26929566264152527, -0.23034155368804932, -0.07334098219871521]]

这是因为torch.nn.parallel.DistributedDataParallel(model)在加载模型的时候,会把rank=0的模型参数传给各个子节点,作为初始化的参数。这样可以保证每个节点拿到的模型参数都是一样的。训练的过程中由于梯度共享的原因,所以每一次迭代梯度也是相同的。

数据如何分发

接着我们探讨另一个问题,如何把数据分发到各个节点上,一个非常简单的想法就是,读取一个batch的数据,然后将这个batch分成n份,n=world_size,也就是进程的数量,这样每个进程就都有完全不同的数据了。
在这里插入图片描述
pytorch实现的也非常简单,定义了一个DistributedSampler来将batch拆分成world_size份。首先每个节点都有需要从远端下载一份数据,然后加载到dataloader中。一开始以为是主节点计算好每个进程要的数据,然后再分发到各个节点计算,当时的一个疑惑是,如果分发数据的话,图像该怎么办呢?图像数据那么大分发起来可就太慢了。后来发现并没有采样数据,而是获取采样下标,然后每个节点根据分发过来的indics自己读取真实的数据
在这里插入图片描述
看了代码发现,主节点并没有分发数据,而是每个节点直接采样torch.randperm下标的。这就更加困惑,各个节点调用随机函数采样,那数据不就会存在重合的现象了吗。直到有一天福至心灵,突然意识到如果随机种子相同,那么采样的数据是不会发生变化的
在这里插入图片描述
这样,给不同的节点设置相同的随机数种子,那么就会得到相同的结果,然后在根据rank获取自己的数据就可以了。下面代码写的非常详细了。

class DistributedSampler(Sampler[T_co]):
    def __iter__(self) -> Iterator[T_co]:
        # deterministically shuffle based on epoch and seed
        g = torch.Generator()
        # 设置随机数种子,因为是根据epoch来的,所以每个节点的随机数种子是相同的
        g.manual_seed(self.seed + self.epoch)
        # 采样数据下标,seed一样,每个节点采样出来的下标也都一样
        indices = torch.randperm(len(self.dataset), generator=g).tolist()  # type: ignore[arg-type]
        # 依据自己的rank,获取部分数据返回
        indices = indices[self.rank:self.total_size:self.num_replicas]
        return iter(indices)
 
    def __len__(self) -> int:
        return self.num_samples
 	# 每一轮我们调用一下set_epoch函数,这样随机数种子就会更新了
 	# 每一轮我们采样的结果才会发生变化,要不然随机数种子不变,每个epoch采样的顺序都不会变化
    def set_epoch(self, epoch: int) -> None:
        self.epoch = epoch

保存和加载模型

保存模型就很简单了,唯一需要注意的点是,我们需要只需要在某个节点保存模型就可以了,不需要每个节点都保存,因为ddp通过all_reduce保证每个节点的模型参数是一致的。pytorch模型保存很有意思,我们知道神经网络有自己的结构,每一层都有自己的名字和参数,更细粒度的,每一个节点都有自己的名字和参数,所以save的是一个dict,key就是每一层的名字,value就是每一层参数tensor。然后把dict序列化成pt或者pth。一个很明显的问题就是只保存了模型的参数,并没有保存模型的结构,所以我们在加载的时候需要使用之前定义的模型结构,然后通过模型加载dict。torch.save的本质就是调用pickle,把dict序列化成pt或pth,仅此而已,torch.load则是使用pickle把之前保存的pt再转换成dict,二model.load_state_dict则是根据dict的key找到模型对应的名字,对权重赋值,仅此而已。所以我们会发现即使大家都使用pytorch,相同的模型结构,加载的时候还是有可能找不到key的,就是因为有的人给网络参数起了不同的名字,这个时候就需要在load之后,把dict的key给重命名一下,然后再保存就可以了。

# save model dict to pt/pth
torch.save(model.state_dict(), PATH)
# load model
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()

还有一个小坑也需要注意一下,我们训练模型的时候通常会指定device,如果device=cuda:1,那么保存的时候也会把这个device的信息保存到模型中,直接使用torch.load默认会加载到cuda:1,如果我们只有cpu或者只有一个cuda:0,那就会报错,所以加载的时候需要把device重映射一下(本质就跟修改dict的key一样),

device = torch.device('cpu')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))
mode.to(device)
# cuda:1映射到cuda:0
device = torch.device('cuda:0')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))
mode.to(device)
import os
import torch

class SaveCheckpoint:
    def __init__(self, output_dir):
        self.output_dir = output_dir
        self.model_dir = os.path.join(output_dir, 'checkpoints')
        if not os.path.exists(self.model_dir):
            os.makedirs(self.model_dir)

    def save(self, global_step, model, optimizer=None, scheduler=None, arguments=None):
        if hasattr(model, 'module'):
            model = model.module  # extract model from a distributed/data-parallel wrapper
        checkpoint_dir = os.path.join(self.model_dir, f'{global_step}')
        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)
        checkpoint_path = os.path.join(checkpoint_dir, f"pytorch_model.bin")

        checkpoint = {'global_step': global_step, 'model_state_dict': model.state_dict()}
        if optimizer:
            checkpoint['optimizer_state_dict'] = optimizer.state_dict()
        if scheduler:
            checkpoint['scheduler_state_dict'] = scheduler.state_dict()
        if arguments:
            checkpoint['arguments'] = arguments

        torch.save(checkpoint, checkpoint_path)

        return checkpoint_path

def train(args):
    sb = SaveCheckpoint(args.output_dir)
    device = torch.device(f"cuda:{args.local_rank}" if torch.cuda.is_available() else "cpu")
    model = nn.Linear(5, 1, bias=False).to(device)
    if torch.distributed.is_initialized():
        if torch.cuda.is_available():
            model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
        else:
            model = torch.nn.parallel.DistributedDataParallel(model)
    optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
    step = 0
    for epoch in range(args.epochs):
        for data in data_loader():
            step += 1
            optimizer.zero_grad()
            py = model(torch.rand(32,5).to(device))
            loss = F.mse_loss(py,torch.rand(32,1).to(device))
            loss.backward() # 计算梯度
            optimizer.step() # 更新权重

            if args.rank == 0 and step % args.save_step == 0:
                sb.save(step, model)

https://zhuanlan.zhihu.com/p/343951042

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
下面是一个使用PyTorch DDP(分布式数据并行)进行多机多卡训练的示例: 1.首先,需要使用torch.distributed.launch启动多个进程,每个进程都运行相同的脚本并使用不同的参数。例如,在两台机器上运行以下命令: ``` # Machine 1 python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=0 --master_addr="10.0.0.1" --master_port=8888 train.py # Machine 2 python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=1 --master_addr="10.0.0.1" --master_port=8888 train.py ``` 上面的命令将在两台机器上启动4个进程,每个进程使用2个GPU进行训练。 2.在代码中,使用torch.distributed初始化进程组,并将模型和数据加载到每个进程中。例如: ``` import torch import torch.nn as nn import torch.distributed as dist # Initialize distributed process group dist.init_process_group(backend='nccl', init_method='env://') # Load data and model train_data = ... train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) model = nn.Sequential( nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10) ) # Distributed model and optimizer model = nn.parallel.DistributedDataParallel(model) optimizer = torch.optim.SGD(model.parameters(), lr=0.01) ``` 这里使用了nn.parallel.DistributedDataParallel将模型包装成分布式模型,使用torch.optim.SGD作为优化器。 3.在训练循环中,每个进程都会收集自己的梯度并将它们聚合到进程组中。然后,所有进程都将使用平均梯度更新模型参数。例如: ``` for epoch in range(10): for data, target in train_loader: optimizer.zero_grad() output = model(data) loss = nn.functional.cross_entropy(output, target) loss.backward() # All-reduce gradients for param in model.parameters(): dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM) optimizer.step() ``` 在每个批次之后,使用dist.all_reduce将每个进程的梯度聚合到进程组中,然后使用平均梯度更新模型参数。 4.训练完成后,使用dist.destroy_process_group()关闭进程组并释放资源。例如: ``` dist.destroy_process_group() ``` 这个示例展示了如何使用PyTorch DDP进行多机多卡训练。需要注意的是,使用DDP需要确保所有进程都能够访问相同的数据和模型,并且需要正确设置进程组中的参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值