推荐算法实践:movielens数据集

MovieLens 数据集介绍

MovieLens 数据集是由明尼苏达大学的GroupLens研究小组维护的一个广泛使用的电影评分数据集,主要用于推荐系统的研究。该数据集包含用户对电影的评分、标签以及其他相关信息,是电影推荐系统开发与研究的常用数据源。

数据集版本

  • MovieLens 数据集有多个版本,不同版本的数据集规模和内容有所不同:
  • MovieLens 100k 数据集:包含943位用户对1682部电影的100,000条评分数据,评分范围为1到5分。
  • MovieLens 1M 数据集:包含1000名用户对3900部电影的100万条评分数据。
  • MovieLens 10M 数据集:包含71,567名用户对10,681部电影的1000万条评分数据。
  • MovieLens 20M 数据集:包含138,000名用户对27,000部电影的2000万条评分数据。
  • MovieLens 25M 数据集:是目前最新发布的版本,包含更多的用户和电影数据。

数据集结构

数据集通常包含以下主要文件:

  1. 用户信息文件(Users.dat),包含用户的基本信息,如用户ID、性别、年龄、职业等。
  • UserID:用户唯一标识。从1~6040, 代表了6040个MovieLens用户

  • Gender:性别(M表示男性,F表示女性)。

  • Age:用户年龄,分成了7组

    • 1: “Under 18”
    • 18: “18-24”
    • 25: “25-34”
    • 35: “35-44”
    • 45: “45-49”
    • 50: “50-55”
    • 56: “56+”
  • Occupation:用户职业,如学生、教师、工程师等。

    • 0: “other” or not specified
    • 1: “academic/educator”
    • 2: “artist”
    • 3: “clerical/admin”
    • 4: “college/grad student”
    • 5: “customer service”
    • 6: “doctor/health care”
    • 7: “executive/managerial”
    • 8: “farmer”
    • 9: “homemaker”
    • 10: “K-12 student”
    • 11: “lawyer”
    • 12: “programmer”
    • 13: “retired”
    • 14: “sales/marketing”
    • 15: “scientist”
    • 16: “self-employed”
    • 17: “technician/engineer”
    • 18: “tradesman/craftsman”
    • 19: “unemployed”
    • 20: “writer”
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值