申请号 | CN202410053862.4 |
公开号(公开) | CN118037635A |
申请日 | 2024.01.12 |
申请人(公开) | 超音速人工智能科技股份有限公司 |
发明人(公开) | 张俊峰(张总); 叶长春(叶总); 许春夏 |
摘要
本发明公开一种光伏加工产品缺陷检测方法,涉及产品检测领域。该光伏加工产品缺陷检测方法,所述缺陷检测方法包括如下步骤:步骤S1:设备启动并通过相机获取产品图像,将图像输入系统中进行处理;步骤S2:对图像进行边缘提取;步骤S3:确定缺陷检测区域;步骤S4:对缺陷进行定位;步骤S5:将缺陷区域分类;步骤S6:输出缺陷数据。该光伏加工产品缺陷检测方法结合边缘提取、确定检测区域、缺陷定位、多特征缺陷分类等方法,构建一种综合的光伏加工产品缺陷检测方法,这种方法能够准确地定位和分类不同类型的缺陷,为生产环节提供及时的反馈和改进方案,提高产品质量和生产效率。
下面是我的理解
第一步:通电并启动设备。
第二步:通过光源自适应,调整光源到合适亮度。
第三步:触发相机拍照,并通过相机驱动程序获取图片。
第四步:对产品图像进行边缘提取,包括但不限于:边缘轮廓、产品表面线条信息。主要涉及Canny边缘检测算法。
第五步:根据第四步的信息及需要检测的缺陷类型,计算需要检测的区域。通过阈值分割方法来确定检测区域,这样可以减少计算量,提高检测效率。
所述缺陷类型包括:垂直度、对齐度、线弓和跳线;
所述缺陷检测区域包括:产品边缘轮廓和产品表面;
在需要检测产品边缘轮廓缺陷垂直度和对齐度类型时,提取产品的轮廓信息特征;
在需要检测产品表面线弓和跳线缺陷类型时,提取产品表面线条信息特征;
第六步:对于确定的缺陷检测区域,使用图像处理算法,对缺陷进行定位。采用连通区域分析算法,定位出缺陷位置,实现准确快速定位缺陷的位置,为后续的分类提供准确的数据。
第七步:对于定位出的缺陷位置,使用机器学习算法,将缺陷检测区域分类为不同的缺陷类型。不同的缺陷通过组合不同的特征得到特征向量,将缺陷进行分类。使用预训练模型提取图像特征,使用FPN融合多尺度特征,使用RPN提取候选框,使用ROIAlign抽取局部特征,使用分类、回归、FCN进行缺陷分类、位置回归以及掩膜信息提取。
第八步:检测结果处理。一,按天或小时,将结果存储到excel或pdf文件中,方便查阅良率等相关信息。二,将部分检测结果传播过PLC,方便控制机台。三,数据实时显示在屏幕上,方便查阅。四,异常数据报警。
特色
特别的,检测系统采用独立控制,与设备联机,检测系统未启动时,设备不运行。
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
《喜缺全书算法册》以原理、正确性证明、总结为主。 |
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。