TP,TN,FP,FN,Precision,Recall,sensitivity,specificity,FPR,TPR,F1值,ROC曲线,PR曲线的解释

本文详细介绍了机器学习中常用的评估指标,包括TP、FP、TN、FN等基本概念,并通过这些参数引出了Recall、Precision、F1-score等重要指标的定义及计算方式。此外,还介绍了ROC曲线和PR曲线的绘制原理。

参数定义

在机器学习里面,通过会用到一些评价指标提到ROC曲线,F1-score等问题,这篇文章主要讲述了各参数是如何定义的,以及相互之间的关系。

首先,看一张表格:

预测\实际正   
TP    FP
FNTN

接下来,解释着四个参数的具体含义

TP:实际是正例,预测为正例 
FP:实际为负例,预测为正例 
TN:实际为负例,预测为负例 

FN:实际为正例,预测为负例

公式推导

Recall=sensitivity=TPR=TP/(TP+FN),真正率,可理解为正确的被判断为正确的

Precision=TP/(TP+FP),准确度,预测为正类中,实际为正类的比例

FPR=FP/(FP+TN),负正类率

specificity=TN/(TN+FP)=1-FPR,真负率,可理解为错误的被判断为错误的

2/F1-score=1/P+1/R  ,F1值

ROC曲线:以TPR,FPR为Y轴,X轴绘制而成

PR曲线:以Precision,Recall为Y轴,X轴绘制而成



评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值