# 欧几里德

#include<iostream>
using namespace std;
int hcf(int a,int b)
{
int r=0;
while(b!=0)
{
r=a%b;
a=b;
b=r;
}
return(a);
}
lcd(int u,int v,int h) //u=a，v=b，h为最小公约数=hcf(a,b);
{
return(u*v/h);
}
int main()
{
int a,b,x,y;
cin>>a>>b;
x=hcf(a,b);
y=lcd(a,b,x);
cout<<x<<" "<<y<<endl;
return 0;
}

# 扩展欧几里德

#include <iostream>
using namespace std;
__int64 ext_euclid(__int64 a,__int64 b, __int64 &x, __int64 &y)
{
int t;
__int64 d;
if (b==0) {x=1;y=0;return a;}
d=ext_euclid(b,a %b,x,y);
t=x;
x=y;
y=t-a/b*y;
return d;
}
void modular_equation(__int64 a,__int64 b,__int64 c)//ax = b(mod n)
{
__int64 d;
__int64 x,y;
d = ext_euclid(a,b,x,y);
if ( c % d != 0 )
else
{
x = (x * c/d) % b ;// 第一次求出的x ;
__int64 t = b/d;
x = (x%t + t)%t;
printf("%I64d\n",x);//最小的正数的值
for (int i=0;i<d;i++)
printf("The %dth answer is : %ld\n",i+1,(x+i*(b/d))%b); //所有的正数值
}
}
/*

对于不定方程ax+by=c的通解为：

x=x*c/d+b/d*t

y=y*c/d+a/d*t

# 中国剩余定理

#include <iostream>
using namespace  std;
int ext_euclid(int a,int b,int &x,int &y)  //求gcd(a,b)=ax+by
{
int t,d;
if (b==0) {x=1;y=0;return a;}
d=ext_euclid(b,a %b,x,y);
t=x;
x=y;
y=t-a/b*y;
return d;
}

int China(int W[],int B[],int k)   //W为按多少排列，B为剩余个数   W>B  K为组数
{
int i;
int d,x,y,a=0,m,n=1;
for (i = 0;i<k;i++)
n *= W[i];
for (i=0;i<k;i++)
{
m=n/W[i];
d=ext_euclid(W[i],m,x,y);
a=(a+y*m*B[i])%n;
}
if (a>0
return a;
else
return(a+n);
}

int main()

{

int B[100],W[100];                                求

int k ;                                           a = 2( mod 5 )

cin >> k ;                                        a = 3( mod 13)

for(int i = 0 ; i < k ;i++)                            的解

{                                               2

cin >> W[i];                                  5 2

cin >> B[i];                                   13 3

}                                               输出 42

cout<<China(W,B,k)<<endl;

return 0;

}

# 求小于n的所有欧拉数

#include <iostream>

using namespace std;

int phi[1000];     //数组中储存每个数的欧拉数

void genPhi(int n)//求出比n小的每一个数的欧拉数(n-1的)

{

int i, j, pNum = 0 ;

memset(phi, 0, sizeof(phi)) ;

phi[1] = 1 ;

for(i = 2; i < n; i++)

{

if(!phi[i])

{

for(j = i; j < n; j += i)

{

if(!phi[j])

phi[j] = j;

phi[j] = phi[j] / i * (i - 1);

}

}

}

}

# 求n的欧拉数

int eular(int n)

{

int ret=1,i;

for (i=2;i*i<=n;i++)

if (n%i==0)

{

n/=i,ret*=i-1;

while (n%i==0)

n/=i,ret*=i;

}

if (n>1)

ret*=n-1;

return ret;    //n的欧拉数

}



# 行列式计算

#include <iostream>

using namespace std;

int js(int s[100][100],int n)

{

int z,j,k,r,total=0;

int b[100][100];  /*b[N][N]用于存放，在矩阵s[N][N]中元素s[0]的余子式*/

if(n>2)

{

for(z=0;z<n;z++)

{

for(j=0;j<n-1;j++)

for(k=0;k<n-1;k++)

if(k>=z)

b[j][k]=s[j+1][k+1];

else

b[j][k]=s[j+1][k];

if(z%2==0)

r=s[0][z]*js(b,n-1); /*递归调用*/

else

r=(-1)*s[0][z]*js(b,n-1);

total=total+r;

}

}

else if(n==2)

total=s[0][0]*s[1][1]-s[0][1]*s[1][0];

}

# 排列

long A(long n,long m)   //n>m

{

long a=1;

while(m!=0)  {a*=n;n--;m--;}

return a;

}

# 组合

long C(long n,long m)     //n>m

{

long i,c=1;

i=m;

while(i!=0)   {c*=n;n--;i--;}

while(m!=0)  {c/=m;m--;}

return c;

}

# 大数乘大数

#include <iostream>
#include <string>
using namespace std;
char a[1000],b[1000],s[10000];
void mult(char a[],char b[],char s[])     //a被乘数，b乘数，s为积
{
int i,j,k=0,alen,blen,sum=0,res[65][65]={0},flag=0;
char result[65];
alen=strlen(a);blen=strlen(b);
for (i=0;i<alen;i++)
for (j=0;j<blen;j++) res[i][j]=(a[i]-'0')*(b[j]-'0');
for (i=alen-1;i>=0;i--)
{
for (j=blen-1;j>=0;j--) sum=sum+res[i+blen-j-1][j];
result[k]=sum%10;
k=k+1;
sum=sum/10;
}
for (i=blen-2;i>=0;i--)
{
for (j=0;j<=i;j++) sum=sum+res[i-j][j];
result[k]=sum%10;
k=k+1;
sum=sum/10;
}
if (sum!=0) {result[k]=sum;k=k+1;}
for (i=0;i<k;i++) result[i]+='0';
for (i=k-1;i>=0;i--) s[i]=result[k-1-i];
s[k]='\0';
while(1)
{
if (strlen(s)!=strlen(a)&&s[0]=='0')
strcpy(s,s+1);
else
break;
}
}

int main()

{

cin>>a>>b;

mult(a,b,s);

cout<<s<<endl;

return 0;}

# 大数乘小数

#include <iostream>

using namespace std;

char a[100],t[1000];

void mult(char c[],int m,char t[])  // c为大数,m<=10,t为积

{

char s[100];

l=strlen(c);

for (i=0;i<l;i++)

s[l-i-1]=c[i]-'0';

for (i=0;i<l;i++)

{

if (k>=10)

{

}

else

{

}

}

if (flag)

{

}

else

l=i;

for (i=0;i<l;i++)

t[l-1-i]=s[i]+'0';

t[l]='\0';

}

int main()

{

int i;

cin>>a>>i;

mult(a,i,t);

cout<<t<<endl;

return 0;

}

# 大数加法

#include <iostream>

#include <string>

using namespace std;

char a[1000],b[1000],s[10000];

{

int i,j,k,up,x,y,z,l;

char *c;

if (strlen(a)>strlen(b)) l=strlen(a)+2; else l=strlen(b)+2;

c=(char *) malloc(l*sizeof(char));

i=strlen(a)-1;

j=strlen(b)-1;

k=0;up=0;

while(i>=0||j>=0)

{

if(i<0) x='0'; else x=a[i];

if(j<0) y='0'; else y=b[j];

z=x-'0'+y-'0';

if(up) z+=1;

if(z>9) {up=1;z%=10;} else up=0;

c[k++]=z+'0';

i--;j--;

}

if(up) c[k++]='1';

i=0;

c[k]='\0';

for(k-=1;k>=0;k--)

s[i++]=c[k];

s[i]='\0';

}

int main()

{

cin>>a>>b;

cout<<s<<endl;

return 0;

}



# 大数减法

#include <iostream>

using namespace std;

char a[1000],b[1000],s[10000];

void sub(char a[],char b[],char s[])

{

int i,l2,l1,k;

l2=strlen(b);l1=strlen(a);

s[l1]='\0';l1--;

for (i=l2-1;i>=0;i--,l1--)

{

if (a[l1]-b[i]>=0)

s[l1]=a[l1]-b[i]+'0';

else

{

s[l1]=10+a[l1]-b[i]+'0';

a[l1-1]=b[l1-1]-1;

}

}

k=l1;

while(a[k]<0) {a[k]+=10;a[k-1]-=1;k--;}

while(l1>=0) {s[l1]=a[l1];l1--;}

loop:

if (s[0]=='0')

{

l1=strlen(a);

for (i=0;i<l1-1;i++) s[i]=s[i+1];

s[l1-1]='\0';

goto loop;

}

if (strlen(s)==0) {s[0]='0';s[1]='\0';}

}

int main()

{

cin>>a>>b;

sub(a,b,s);

cout<<s<<endl;

return 0;

}



# 大数阶乘

#include <iostream>

#include <cmath>

using namespace std;

long a[10000];

int factorial(int n)         //n为所求阶乘的n!的n

{

int i,j,c,m=0,w;

a[0]=1;

for(i=1;i<=n;i++)

{

c=0;

for(j=0;j<=m;j++)

{

a[j]=a[j]*i+c;

c=a[j]/10000;

a[j]=a[j]%10000;

}

if(c>0) {m++;a[m]=c;}

}

w=m*4+log10(a[m])+1;

printf("%ld",a[m]); //        输出

for(i=m-1;i>=0;i--) //

printf("%4.4ld",a[i]);//

printf("\n");

return w;            //返回值为阶乘的位数

}

# 大数求余

int mod(int B)     //A为大数，B为小数

{

int i = 0,r = 0;

while( A[i] != '\0' )

{

r=(r*10+A[i++]-'0')%B;

}

return r ;    //r为余数

}

# 高精度任意进制转换

#include <iostream>

#include <string>

using namespace std;

char s[1000],s2[1000];   // s[]:原进制数字，用字符串表示，s2[]:转换结果，用字符串表示

long d1,d2;   // d1:原进制数，d2:需要转换到的进制数

void conversion(char s[],char s2[],long d1,long d2)

{

long i,j,t,num;

char c;

num=0;

for (i=0;s[i]!='\0';i++)

{

if (s[i]<='9'&&s[i]>='0') t=s[i]-'0'; else t=s[i]-'A'+10;

num=num*d1+t;

}

i=0;

while(1)

{

t=num%d2;

if (t<=9) s2[i]=t+'0'; else s2[i]=t+'A'-10;

num/=d2;

if (num==0) break;

i++;

}

for (j=0;j<=i/2;j++)

{c=s2[j];s2[j]=s2[i-j];s2[i-j]=c;}

s2[i+1]='\0';

}

int main()

{

while (1)

{

cin>>s>>d1>>d2;

conversion(s,s2,d1,d2);

cout<<s2<<endl;

}

return 0;

}

#include <iostream>//基本方法，n为所求数，返回1位素数，0为合数

#include <cmath>

using namespace std;

int comp(int n){

int i,flag=1;

for (i=2;i<=sqrt(n);i++)

if (n%i==0) {flag=0;break;}

if (flag==1) return 1; else return 0;}

int prime(int a[],int n)            //小于n的素数

{   int i,j,k,x,num,*b;

n++;

n/=2;

b=(int *)malloc(sizeof(int)*(n+1)*2);

a[0]=2;a[1]=3;num=2;

for(i=1;i<=2*n;i++)

b[i]=0;

for(i=3;i<=n;i+=3)

for(j=0;j<2;j++)

{

x=2*(i+j)-1;

while(b[x]==0)

{

a[num++]=x;

for(k=x;k<=2*n;k+=x)

b[k]=1;

}

}

return num; }                //小于n的素数的个数}

bool flag[1000000];

void prime(int M)               //01表

{     int i , j;

int sq = sqrt(double(M));

for(i = 0 ;i < M ;i ++)

flag[i] = true;

flag[1] = false;   flag[0] = false;

for(i = 2 ;i <= sq ;i++)

if(flag[i])

{

for(j = i*i ;j < M ;j += i)

flag[j] = false;

}

}

Miller_Rabin随机素数测试算法

说明：这种算法可以快速地测试一个数是否

满足素数的必要条件，但不是充分条件。不

过也可以用它来测试素数，出错概率很小，

对于任意奇数n>2和正整数s,该算法出错概率

至多为2^(-s)，因此，增大s可以减小出错概

率，一般取s=50就足够了。

#include<iostream>

#include <cmath>

using namespace std;

int Witness(int a, int n)

{

int i, d = 1, x;

for (i = ceil( log( (float) n - 1 ) / log(2.0) ) - 1; i >= 0; i--)

{

x = d;

d = (d * d) % n;

if ( (d == 1) && (x != 1) && (x != n-1) )

return 1;

if ( ( (n - 1) & ( 1<<i ) ) >0 )

d = (d * a) % n;

}

return (d == 1 ? 0 : 1);

}

int Miller_Rabin(int n, int s)

{

int j, a;

for (j = 0; j < s; j++)

{

a = rand() * (n - 2) / RAND_MAX + 1;

if (Witness(a, n))

return 0;

}

return 1;

}

int main()

{

int x;

cin>>x;

cout<<Miller_Rabin(x , 50)<<endl;

return 0;

}

# 整数拆分不可重复

#include <iostream>

#include <memory>

using namespace std;

const int MAX = 500;

long long data[MAX][MAX];

int main()

{

int i,j;

memset(data, 0, sizeof(int)*MAX);

for(i = 0; i < MAX; i++)

data[0][i] = 0;

for(i = 0; i < MAX; i++)

{

for(j = 0; j < MAX; j++)

{

int sum = j*(j+1)/2;

if(i > sum) data[i][j] = 0;

else if(i == sum) data[i][j] = 1;

else

{

if(i == j) data[i][j] = 1 + data[i][j-1];

else if(i < j) data[i][j] = data[i][i];

else data[i][j] = data[i-j][j-1] + data[i][j-1];

}

}

}

int n;

while(cin >> n)

cout << data[n][n] << endl;

return 0;

}

int data[100];

void main(int n;)

{      int k = 2;

for(; n >= k; n-=k,k++)

data[k] = k;

for(int i = k-1; i >= 2 && n; i--, n--)

data[i]++;

data[k-1] += n;

for(int j = 2; j < k; j++)

cout << data[j] << " ";

cout << endl; }

# 整数的无序拆分（可重复）

#include <iostream>       //求出可分解个数

#include <memory>

using namespace std;

const int MAX = 600;

long long data[MAX][MAX];

int main()

{

int i,j;

memset(data, 0, sizeof(int)*MAX);

for(j = 0; j < MAX; j++)

data[0][j] = 0;

for(i = 1; i < MAX; i++)

{

for(j = 1; j < MAX; j++)

{

if(i == j)

data[i][j] = data[i][j-1]+1;

else if(i < j)

data[i][j] = data[i][i];

else

data[i][j] = data[i][j-1]+data[i-j][j];

}

}

int n;

while(cin >> n)

cout << data[n][n] << endl;

return 0;

}

# 整数的无序拆分（可重复）

#include <iostream>   //列出分解情况

#include <memory>

using namespace std;

const int MAX = 300;

int data[MAX];

int main()

{

int i,n;

cin >> n;

for(i = 0; i < n; i++)

{

data[i] = 1;

printf("1");

}

printf("\n");

int size = n;

while(size > 1)

{

int t, p, r;

t = data[size-1] + data[size-2];

p = t / (data[size-2]+1);

r = t % (data[size-2]+1);

t = data[size-2]+1;

i = size - 2;

size = size - 2 + p;

for(; i < size; i++)

data[i] = t;

data[size-1] += r;

for(i = 0; i < size; i++)

printf("%d", data[i]);

printf("\n");

}

return 0;

}

# 约瑟夫环

void f()

{

int n , k , m , i , j , start;

while(cin>>n>>k>>m )   //n代表有多少个人 , k表示叫到k的人出列 , m 表示第一次谁先开始叫

{

start = 0;

if( !n && !k && !m)

return 0;

for(i = 1 ;i < n; i++)

{

start = (start + k) % i;

}

start++;

start = (start + m) % n;

if(!start)

cout<<n<<endl;

else

cout<<start<<endl;

}

return ;

}

#include <stdio.h>

main()

{

int n, m, i, s=0;

printf ("N M = "); scanf("%d%d", &n, &m);

for (i=2; i<=n; i++) s=(s+m)%i;

printf ("The winner is %d\n", s+1);

}

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客