- 博客(49)
- 资源 (14)
- 收藏
- 关注

原创 数学建模算法学习——各类模型算法汇总
相关模型解决的问题数据分析类算法一览100个经典动态规划方程优化问题线性规划简介:线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为其中 c 和 x 为 n 维列向量, A 、 Aeq 为适当维数的矩阵, b 、 beq 为适当维数的列向量。代码实现...
2019-09-08 14:28:50
22984
6
原创 PCA与SVD的联系与区别是什么?
PCA的核心数学实现可视为SVD的协方差场景特例,即当对中心化数据矩阵进行奇异值分解时,其左奇异向量直接对应主成分方向(特征空间基轴),而奇异值的平方恰为协方差矩阵的特征值(表征各维度方差能量)。这种等价性使SVD成为求解PCA的数值稳定捷径,无需显式计算协方差矩阵(避免病态条件问题),直接通过数据矩阵分解一步获得主成分与能量分布。【SVD直接分解,PCA对协方差矩阵操作后分解】奇异值和特征向量存在关系,有λis2in−1λis2in−1。
2025-08-12 09:39:19
367
原创 不同类型模型的样本组织形式
在推荐系统中,样本流作为模型的基建至关重要,样本的组织形式通常与模型预估的目标的特点相关,包括PointWise、Parwise和Listwise的建模方式;一般主要是PointWise的模型居多,其次是Listwise的,Pairwise的模型相对较少。
2025-08-09 17:04:02
263
原创 推荐算法工程师的从业必备基础技术栈
推荐算法工程师作为AI算法工程师中诸多岗位中的一个,在互联网公司岗位数量普遍更多,尤其是在互联网大厂,推荐、广告和搜索场景的业务非常多,岗位也相对较多。传统的CV和NLP岗位在互联网公司主要是一些风控、打标签或者为推荐算法模型提供模态特征等工作,实际求职过程竞争也会更加激烈😭,岗位少但是求职者更多,人均顶会在手,更看重Paper的含金量。对个人的技术栈的全面性要求更高,但是对于模型的技术深度相比CV/NLP岗位来比,还是要浅薄一些,但是对个人的动手实践能力要求更高。
2025-08-08 22:26:35
327
原创 推荐系统召回粗排的优化思路
召回作为推荐庞大候选底池中捞取候选的入口,一个完整的推荐系统都是由多路召回组成,甚至一些大场景的召回路数几十上百路,每一路召回最终曝光的独占比非常低。从召回迭代初期来看,一般新增合理的召回通路都能带来新线上指标的提升。但随着召回通路不断增加,一是线上召回的机器资源压力激增,二是受边际递减的规律,新增召回的收益会越来越小,最终导致新增召回的 ROI(投入产出比)非常低。因此,召回的迭代路线主要包括新增合理的召回通路,在已有的召回通路上优化迭代,在多路召回每路的权重。新增合理的召回通路。
2025-08-06 20:19:52
247
原创 【工业级成熟设计方案】一个完整的推荐系统的架构设计
从算法侧的视角来看,我们通常看到的是推荐系统召回、粗排、精排和混排(重排)这样的漏斗链路,对应着一次推荐的请求下,从千百万的候选侧底池中一次“捞出”用户最感兴趣的几个候选。候选根据业务场景的指代有所不同,在广告业务下是广告计划,在电商业务下是商品,在推荐业务下是短视频等。
2025-08-05 09:25:44
571
原创 广告算法必备的基本术语汇总大全
这篇摘要概括了数字广告投放的核心概念和关键指标。主要内容包括:广告计费方式(CPM、CPC等)、投放流程(展示、点击、转化)、效果评估指标(CTR、CVR、ROI)、平台技术(DSP、DMP、RTB等)以及价值计算(广告主价值、eCPM)。同时解释了频控、流控等投放策略,区分了不同广告交易模式(PMP、RTB)。重点强调了广告主价值是平台合理收费的上限,指出其与cost的区别,并说明预算限制可能导致实际收费低于广告主价值。这些概念构成了数字广告投放的基础框架和评估体系。
2025-08-05 09:20:48
857
原创 推荐&广告&搜索三种业务的区别
搜广推作为互联网公司几大核心的业务,三个大方向的业务有很多技术共同点,但是彼此又有很多差别,那么推荐、广告和搜索对于算法工程师来说到底有什么区别呢?
2025-08-04 21:28:03
519
原创 推荐系统,计算广告模型论文,代码与数据集汇总
更多细节参考项目:https://github.com/JackHCC/Rec-Modelshttps://github.com/JackHCC/Rec-Models📝 Summary of recommendation, advertising and search models.
2022-12-24 12:16:40
1540
1
原创 Awesome Uplift Modeling【如何学习因果推断、因果机器学习和Uplift建模?All in here】
How to Apply Causal ML to Real Scene Modeling?How to learn Causal ML?Github项目地址:👉https://github.com/JackHCC/Awesome-Uplift-Model👈👉https://github.com/JackHCC/Awesome-Uplift-Model👈The most commonly used models for causal inference are Rubin Causal Model
2022-12-03 18:55:38
1604
原创 利用传统方法(N-gram,HMM等)、神经网络方法(CNN,LSTM等)和预训练方法(Bert等)的中文分词任务实现
利用传统方法(N-gram,HMM等)、神经网络方法(CNN,LSTM等)和预训练方法(Bert等)的中文分词任务实现【The word segmentation task is realized by using traditional methods (n-gram, HMM, etc.), neural network methods (CNN, LSTM, etc.) and pre training methods (Bert, etc.)】...
2022-06-21 23:36:19
698
原创 开箱即用!中文关键词抽取(Keyphrase Extraction),基于LDA与PageRank(TextRank, TPR, Salience Rank, Single TPR)
中文关键词抽取,基于LDA与PageRank(TextRank, TPR, Salience Rank, Single TPR)
2022-06-13 12:20:41
2350
5
原创 Pytorch实现中文文本分类任务(Bert,ERNIE,TextCNN,TextRNN,FastText,TextRCNN,BiLSTM_Attention, DPCNN, Transformer)
Github项目地址:https://github.com/JackHCC/Chinese-Text-Classification-PyTorch中文文本分类,基于pytorch,开箱即用。神经网络模型:TextCNN,TextRNN,FastText,TextRCNN,BiLSTM_Attention, DPCNN, Transformer预训练模型:Bert,ERNIE模型介绍、数据流动过程:参考数据以字为单位输入模型,预训练词向量使用 搜狗新闻 Word+Character 300d,点这里下载参考:
2022-06-10 21:40:14
4222
16
原创 机器学习与深度学习模型复现与知识点汇总指南
Awesome Deep Learning Models🤩Learning and reproducing classic deep learning models by using PyTorch.🛠This repository is not a library, it’s just some learning resource about catching the tricks of calssical models. You can get some details you need her
2022-05-13 16:17:36
746
原创 Transformer常见问题与回答总结
摘要 Transformer模型的核心机制包括多头注意力(增强特征多样性)、Q/K/V分离投影(提升表达能力)、点积注意力(高效计算)、缩放因子(稳定梯度)和位置编码(引入序列顺序)。关键技术还包括残差连接(缓解梯度消失)、LayerNorm(处理变长序列)、前馈网络(ReLU激活)以及Decoder的序列掩码(防止信息泄露)。训练时采用学习率预热与衰减策略,Dropout应用于多个层以提高泛化性,测试时需关闭Dropout以保持确定性。模型通过并行化加速训练,但推理时Decoder需串行解码。
2022-04-10 11:42:45
5385
原创 Arxiv上每日自动获取最新NLP领域论文
该工具自动抓取Arxiv上最新的NLP论文并生成Markdown表格。主要功能包括: 通过arxiv API获取论文信息,包括标题、作者、摘要、发布时间等 检查论文是否附带开源代码 生成两种格式的Markdown输出: 适合GitHub README的表格格式 适合网页的列表格式 支持按日期自动更新和排序论文 提供GitHub Action配置,实现每日自动更新 项目已开源,可部署为自动化论文追踪工具,帮助研究人员及时了解最新NLP研究进展。
2022-01-14 18:13:24
1573
原创 计算机三维全息仿真框架CGH
Computer-Generated-Hologram仓库地址:https://github.com/JackHCC/Computer-Generated-Hologram✨This library introduces the current production process of computer holography, and uses MATLAB and Python to record and reproduce holograms. In the future, I will buil
2021-12-16 18:18:17
2342
原创 北京市优秀毕业论文—基于车辆轨迹时空数据的城市热点预测模型研究
写在前面本科毕业设计论文开源,论文与代码地址:Github基于车辆轨迹时空数据的城市热点预测模型研究摘要智能交通在近年得到了学术界和产业界的广泛重视。尤其是随着道路网的不断完善,交通车流越来越庞大,交通流预测显得越来越重要,分析并预测交通状况和交通热点分布情况是交通管控的基础,对城市交通管控有着十分重要的意义。随着车辆轨迹大数据技术、人工智能和机器学习技术的发展,基于机器学习和大数据对车辆密度进行预测已成为重要的技术趋势。本文基于车辆轨迹大数据,利用机器学习技术对城市交通热点进行预测,主要的研究内
2021-12-15 20:49:24
3700
1
原创 北京大学集成电路专业研究生课程知识点与作业汇总
Peking University Lessons Summary????Summary of Knowledge Points and Assignments of Peking University Integrated Circuit Major Courses.Github仓库:仓库地址北京大学集成电路专业硕士生课程知识点与大作业汇总【更新中】课程知识点总结Introduction to Dialectics of Nature【自然辩证法概论】Embedded Micropro
2021-11-08 13:53:08
424
原创 手撸Transformer
Transformer关于Transformer的理论学习:Transformer详解本文的源代码地址:Transformer代码地址Colab实验地址:Colab0. 架构图1. 数据准备import torchimport numpy as npimport torch.nn as nnimport torch.optim as optimimport torch.utils.data as Data # Encoder_input Decode
2021-11-01 16:27:07
2341
原创 一些实用高效的装机软件汇总
写在前面:个人常用的一些实用高效的办公软件汇总浏览器Chrome谷歌浏览器很好用,有很多强大的插件,但是很大的缺点是太耗内存Microsoft Edge (windows自带)新版Edge搭载Chrome内核,是Chrome的良好替代FirefoxLinux下的专业浏览器办公Office:Windows自带,Office全家桶办公必备,个人觉得比WPS好用BandZip解压缩神器,支持各种解压缩格式,轻量docsmall通通变小之压缩
2021-10-21 11:42:08
876
原创 些实用高效的Vscode插件推荐
写在前面:个人常用的一些实用高效的Vscode插件推荐Better Comments强大的注释插件强大的注释分类工具,一目了然:Bookmarks强大的书签标记工具可标记代码位置打书签Bracket Pair Colorizer括号标记匹配工具,就是有点太花括号彩虹,让括号匹配更加直观:Chinese (Simplified) Language Pack for Visual Studio Code简体中文语言包,汉化VscodeCommunity Material T
2021-10-21 11:27:46
494
原创 Python:机器学习模块PyTorch【下】
上接:Python:机器学习模块PyTorch【上】Reduction Opstorch.cumprodtorch.cumprod(input, dim, out=None) → Tensor参数:input (Tensor) – 输入张量dim (int) – 累积积操作的维度out (Tensor, optional) – 结果张量例子:>>> a ...
2020-02-27 16:06:41
798
1
原创 Python:机器学习模块PyTorch【上】
点击访问:PyTorch中文API应用具体代码地址自动求导机制本说明将概述Autograd如何工作并记录操作。了解这些并不是绝对必要的,但我们建议您熟悉它,因为它将帮助您编写更高效,更简洁的程序,并可帮助您进行调试。从后向中排除子图每个变量都有两个标志:requires_grad和volatile。它们都允许从梯度计算中精细地排除子图,并可以提高效率。requires_grad如果有一...
2020-02-27 16:03:41
979
原创 Python:机器学习scikit-learn
学习参考官方中文文档机器学习方式机器学习可以分为以下五个大类:(1 )监督学习:从给定的训练数据集中学习出-一个函数,当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求是输人和输出,也可以说是特征和目标。训练集中的目标是由人标注的。常见的监督学习算法包括回归与分类。(2)无监督学习:无监督学习与监督学习相比,训练集没有人为标注的结果。常见的无监督学习算法有聚类等。(3)半...
2020-02-27 16:01:05
246
原创 Python:matplotlib数据可视化(下)
Python:matplotlib数据可视化(上)第十八章 注解股票图表的最后价格在这个 Matplotlib 教程中,我们将展示如何跟踪股票的最后价格的示例,通过将其注解到轴域的右侧,就像许多图表应用程序会做的那样。虽然人们喜欢在他们的实时图表中看到历史价格,他们也想看到最新的价格。 大多数应用程序做的是,在价格的y轴高度处注释最后价格,然后突出显示它,并在价格变化时,在框中将其略微移动。...
2020-02-27 15:56:26
969
原创 Python:matplotlib数据可视化(上)
在线阅读PDF格式EPUB格式MOBI格式代码仓库第一章 Matplotlib 简介这里涉及Matplotlib 数据可视化模块的多个方面。 Matplotlib 能够创建多数类型的图表,如条形图,散点图,条形图,饼图,堆叠图,3D 图和地图图表。首先,为了实际使用 Matplotlib,我们需要安装它。如果你安装了更高版本的 Python,你应该能够打开cmd.exe或终端,...
2020-02-27 15:55:19
1433
1
原创 Python:利用多种方式解微分方程(以二阶微分系统零状态响应为例)
1.问题:求系统的零状态响应2.引入首先用高数知识求解非齐次常系数微分方程再利用信号与系统中冲激响应求解验证利用MATLAB求解验证y=dsolve('D2y+3*Dy+2*y=exp(-t)','y(0)=1','Dy(0)=2','t')得出结果:y = (t - 2 exp(-t) + 3) exp(-t)根据...
2020-02-27 15:54:26
9024
4
原创 Python:Pandas总结
一、生成数据表1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:import numpy as np import pandas as pd2、导入CSV或者xlsx文件:df = pd.DataFrame(pd.read_csv(‘name.csv’,header=1)) df = pd.DataFrame(pd.read_excel(‘n...
2020-02-27 15:53:37
740
原创 Python:Numpy详解
NumPy Ndarray 对象NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。ndarray 对象是用于存放同类型元素的多维数组。ndarray 中的每个元素在内存中都有相同存储大小的区域。ndarray 内部由以下内容组成:一个指向数据(内存或内存映射文件中的一块数据)的指针。数据类型或 ...
2020-02-27 15:52:41
7333
原创 Python:图形化GUI-pyQt5-tools入门
python:图形化GUI-pyQt5入门通过Qt设计师在GUI中添加窗口部件继续添加一个菜单使用代码创建了GUI,我们继续在GUI窗口中创建一个“修改”菜单:为“退出”菜单添加状态栏信息目前使用qt设计师创建的GUI中,当鼠标移动到菜单项时,底部的状态栏是不会有变化的:我们通过右侧的属性设置列表中的“statusTip”,设置为:当鼠标移动到“退出”按钮时,状态栏提示“点击退出应...
2020-02-27 15:50:37
3597
《数据库技术及应用》实验报告 .docx
2019-11-30
Python小项目
2019-09-08
C++实验报告——个人银行账户管理系统.docx
2019-11-30
miniGame.rar
2019-09-08
通信原理实验汇总hcc.rar
2019-12-18
TheAlgorithm.rar
2019-09-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人