14.连续子数组的最大和

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

解法1:动态规划

1)连续的的数组值求和

2)定义暂时的子数组和值,该值和当前值比较,若大于当前值则包含,否则以当前值为起始点

3)定义最大值变量此变量和每次求得的子数组比较

4)得出最大的连续子数组

class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> array) {
       if (array.size()==0)
         {
             return 0;
         }
        int cursum=array[0];//定义变量存储子数组的和
        int maxsum=array[0];//定义变量存储子数组的暂时最大的和
        for(int i=1;i<array.size();i++)
        {
            cursum+=array[i];
            if(cursum<array[i])//若前面的值加上当前值要小于当前值,说明当前值还大,从当前值开始
                cursum=array[i];
            if(cursum>maxsum)//临时存储最大值
                maxsum=cursum;           
        }
    return maxsum;
    }
};

通过!

或者理解为:

F(i)=fmax(F(i-1)+array[i] , array[i])

res=fmax(res,F(i))

F(i):以array[i]为末尾元素的子数组的和的最大值,子数组的元素的相对位置不变

res:所有子数组的和的最大值

class Solution
{
 public:
  int FindGreatestSumOfSubArray(vector<int> array)
   {
        int res = array[0]; //记录当前所有子数组的和的最大值
        int max=array[0];   //包含array[i]的连续数组最大值
        for (int i = 1; i < array.size(); i++) 
        {
            max=fmax(max+array[i], array[i]);
            res=fmax(max,res);
        }
        return res;
  }   
};

通过!

类似解法:

class Solution
{
 public:
  int FindGreatestSumOfSubArray(vector<int> array)
   {
        if(array.size()==0)
            return 0;
        else
        {
            int cursum=array[0],maxSum=array[0];
            for(int i=1;i<array.size();i++)
            {
                if(cursum>=0)
                   cursum+=array[i];
                else
                    cursum=array[i];
                if(cursum>maxSum)
                    maxSum=cursum;
            }
            return maxSum;
        }  
  }
};

参考:https://www.nowcoder.com/questionTerminal/459bd355da1549fa8a49e350bf3df484

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heda3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值