题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
解法1:动态规划
1)连续的的数组值求和
2)定义暂时的子数组和值,该值和当前值比较,若大于当前值则包含,否则以当前值为起始点
3)定义最大值变量此变量和每次求得的子数组比较
4)得出最大的连续子数组
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
if (array.size()==0)
{
return 0;
}
int cursum=array[0];//定义变量存储子数组的和
int maxsum=array[0];//定义变量存储子数组的暂时最大的和
for(int i=1;i<array.size();i++)
{
cursum+=array[i];
if(cursum<array[i])//若前面的值加上当前值要小于当前值,说明当前值还大,从当前值开始
cursum=array[i];
if(cursum>maxsum)//临时存储最大值
maxsum=cursum;
}
return maxsum;
}
};
通过!
或者理解为:
F(i)=fmax(F(i-1)+array[i] , array[i])
res=fmax(res,F(i))
F(i):以array[i]为末尾元素的子数组的和的最大值,子数组的元素的相对位置不变
res:所有子数组的和的最大值
class Solution
{
public:
int FindGreatestSumOfSubArray(vector<int> array)
{
int res = array[0]; //记录当前所有子数组的和的最大值
int max=array[0]; //包含array[i]的连续数组最大值
for (int i = 1; i < array.size(); i++)
{
max=fmax(max+array[i], array[i]);
res=fmax(max,res);
}
return res;
}
};
通过!
类似解法:
class Solution
{
public:
int FindGreatestSumOfSubArray(vector<int> array)
{
if(array.size()==0)
return 0;
else
{
int cursum=array[0],maxSum=array[0];
for(int i=1;i<array.size();i++)
{
if(cursum>=0)
cursum+=array[i];
else
cursum=array[i];
if(cursum>maxSum)
maxSum=cursum;
}
return maxSum;
}
}
};
参考:https://www.nowcoder.com/questionTerminal/459bd355da1549fa8a49e350bf3df484