Tensorflow相关函数理解

本文详细介绍了Tensorflow中的三个重要函数:tf.truncated_normal用于生成截断正态分布的随机值,tf.constant创建常量张量,而tf.nn.conv2d则进行二维卷积运算。每个函数的参数和工作原理都通过实例进行了说明。
摘要由CSDN通过智能技术生成

tensorflow相关函数理解


n维张量:

参考:https://blog.csdn.net/qq_32146369/article/details/102097676

1. tf.truncated_normal

def truncated_normal(shape,
                     mean=0.0,
                     stddev=1.0,
                     dtype=dtypes.float32,
                     seed=None,
                     name=None):

函数说明:从截断正态分布输出随机值。生成的值会遵循一个指定了平均值和标准差的正态分布,只保留两个标准差以内的值,超出的值会被弃掉重新生成。(即随机数与均值的差值大于两倍的标准差时,重新生成)。

取值范围: [ mean - 2 * stddev, mean + 2 * stddev ]

参数说明

参数名 必选 类型 说明
shape 1 维整形张量或 array 输出张量的维度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值