正交多分辨分析:共轭滤波器证明

( { V j , j ∈ Z } , ϕ ( t ) ) (\{V_{j},j\in \mathbb{Z}\},\phi(t)) ({ Vj,jZ},ϕ(t)) L 2 ( R ) L^{2}(\mathbb{R}) L2(R)上的一个正交多分辨分析,且有 W j : W j ⊥ V j , W j ∪ V j = V j + 1 , ∃ ψ ( t ) ∈ W 0 , s . t . { ψ ( t − n ) ; n ∈ Z } W_{j}:W_{j} \perp V_{j},W_{j} \cup V_{j}=V_{j+1},\exist \psi(t)\in W_{0},s.t.\{\psi(t-n);n\in \mathbb{Z}\} Wj:WjVj,WjVj=Vj+1,ψ(t)W0,s.t.{ ψ(tn);nZ}构成 W 0 W_{0} W0O.N.B。则我们知道 ϕ ( t ) \phi(t) ϕ(t)为尺度函数, ψ ( t ) \psi(t) ψ(t)为正交小波函数,两者可以分别利用低通滤波器 H ( w ) H(w) H(w)和带通滤波器 G ( w ) G(w) G(w)来形象的描述(体现了线性子空间 V 0 V_{0} V0 W 0 W_{0} W0 V 1 V_{1} V1之间的关系)。下面给出关于两种滤波器的性质:

∣ H ( w ∣ 2 + ∣ H ( w + π ) ∣ 2 = 1 |H(w|^{2}+|H(w+\pi)|^{2}=1 H(w2+H(w+π)2=1
∣ G ( w ∣ 2 + ∣ G ( w + π ) ∣ 2 = 1 |G(w|^{2}+|G(w+\pi)|^{2}=1 G(w2+G(w+π)2=1
H ( w ) G ∗ ( w ) + H ( w + π ) G ∗ ( w + π ) = 0 H(w)G^{*}(w)+H(w+\pi)G^{*}(w+\pi)=0 H(w)G(w)+H(w+π)G(w+π)=0

引入记号 M ( w ) \bf {M}(\it w) M(w),
M ( w ) = [ H ( w ) H ( w + π ) G ( w ) G ( w + π ) ] \bf {M}(\it w)= \left[ \begin{matrix} H(w) & H(w+\pi) \\ G(w) & G(w+\pi) \end{matrix} \right ] M(w)=[H(w)G(w)H(w+π)G(w+π)]
由滤波器性质可以得到: M ( w ) M ∗ ( w ) = [ 1 0 0 1 ] \bf {M}(\it w) \bf {M^{*}}(\it w)=\left[ \begin{matrix} 1 & 0 \\ 0& 1 \end{matrix} \right ] M(w)M(w)=[1001] M ( w ) \bf {M}(\it w) M(w)为酉矩阵。下面给出证明过程:

(1)首先证明一个引理。

引理:设 s ( t ) ∈ L 2 ( R ) s(t)\in L^{2}(\mathbb{R}) s(t)L2(R) ,则 { s ( t − n ) ; n ∈ Z } \{s(t-n);n\in\mathbb{Z}\} { s(tn);nZ}O.B.S    ⇔    ∑ k ∈ Z ∣ s ^ ( w + 2 k π ) ∣ 2 = 1 \;\Leftrightarrow\;\sum\limits_{k\in\mathbb{Z}}\left | \hat s(w+2k\pi)\right |^{2}=1 kZs^(w+2kπ)2=1

证明:

  1. 充分性:设 s ( t ) ∈ L 2 ( R ) s(t)\in L^{2}(\mathbb{R}) s(t)L2(R) ,则 { s ( t − n ) ; n ∈ Z } \{s(t-n);n\in\mathbb{Z}\} { s(tn);nZ}O.B.S    →    ∑ k ∈ Z ∣ s ^ ( w + 2 k π ) ∣ 2 = 1 \;\rightarrow\;\sum\limits_{k\in\mathbb{Z}}\left | \hat s(w+2k\pi)\right |^{2}=1 kZs^(w+2kπ)2=1
    ∵ ∫ − ∞ ∞ s ( t − n ) s ∗ ( t − m ) d t = δ ( n − m ) , ∀ ( n , m ) ∈ Z 2 \because\int_{-\infty}^{\infty}s(t-n)s^{*}(t-m)dt=\delta(n-m),\forall(n,m)\in\mathbb{Z}^{2} s(tn)s(tm)dt=δ(nm),(n,m)Z2
    ∴ ∫ − ∞ ∞ s ( t − n ) s ∗ ( t − m ) d t = 1 2 π ∫ − ∞ ∞ s ^ ( w ) e − i n w s ^ ∗ ( w ) e i m w d w = 1 2 π ∫ − ∞ ∞ ∣ s ^ ( w ) ∣ 2 e − i ( n − m ) w d w = 1 2 π ∑ k ∈ Z ∫ 2 k π ( 2 k + 1 ) π ∣ s ^ ( w ) ∣ 2 e − i ( n − m ) w d w = 1 2 π ∑ k ∈ Z ∫ 0 2 π ∣ s ^ ( w + 2 k π ) ∣ 2 e − i ( n − m ) w d w = 1 2 π ∫ 0 2 π ∑ k ∈ Z ∣ s ^ ( w + 2 k π ) ∣ 2 e − i ( n − m ) w d w = 1 2 π ∫
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值