正交多分辨分析1

本文介绍了正交多分辨分析的目的,定义及尺度方程和小波方程。正交小波用于能量有限信号的时频分析,通过构建正交基实现信号分解。正交多分辨分析(MRA)提供了一种找到这种基的方法,涉及尺度函数和小波函数的正交性和完备性。尺度方程和小波方程是理解这一理论的关键,它们揭示了基函数之间的关系和滤波器作用。
摘要由CSDN通过智能技术生成

正交多分辨分析1

1. 目的

我们希望使用正交小波对能量有限的信号(f(t)\in L^{^{2}}(\mathbb{R}))进行分解以便于进行时频分析,需要构建信号空间的正交小波,其中正交小波定义如下:

\exists \psi (t)为小波函数,st.

\{\psi _{j,k}(t)=2^{j/2}\psi (2^{j}t-k),(j,k)\in \mathbb{Z}^{2}\}构成信号空间L^{^{2}}(\mathbb{R})上的标准正交基(O.N.B),则称\psi (t)为正交小波。

正交小波通过对小波函数进行时域的离散的压缩和平移构成L^{2}(\mathbb{R})上的一组O.N.B,也就是说我们可以利用一组离散的基来表示连续的信号,即仅仅通过离散的序列就可以表示连续的信号,这样便更加容易对信号进行分析和处理。之前类似的例子就是傅里叶级数,但是要求分解的信号为周期信号。但是正交小波通过对基的强限制可以对能量有限的信号空间内的任意信号进行分解,因此如何找到这样的一组基便是重中之重。而正交多分辨分析就是这样一种理论,可以帮助我们找到这样一组基。

2. 正交多分辨分析的定义

\{V_{j};j\in \mathbb{Z}\}L^{^{2}}(\mathbb{R})上的一个闭的线性子空间列,\phi (t)\in V_{0},满足下列条件:

A.\;V_{j}\subset V_{j+1},j\in \mathbb{Z}

B.\;\bigcup_{j\in \mathbb{Z}}{}V_{j}=L^{^{2}}(\mathbb{R})

C.\; \bigcap_{j\in \mathbb{Z}}{}V_{j}=\{0\}

D.\; f(t)\in V_{j}\Leftrightarrow f(2t)\in V_{j+1}

E.\;\{\phi (t-n),n\in \mathbb{Z}\}V_{0}O.N.B

则称(\{V_{j};j\in \mathbb{Z}\},\phi (t))L^{^{2}}(\mathbb{R})上的一个正交多分辨分析(MRA)

根据上述定义,可以得到以下几点结论:

(1)\;\{\phi_{j,n}(t)=2^{j/2}\phi(2^{j}t-n),n\in \mathbb{Z}\}V_{j}O.N.B

(2)\;V_{j}\rightarrow L^{2}(\mathbb{R}),j\rightarrow \infty ;V_{j}\rightarrow \{0\},j\rightarrow -\infty

(3)\; \exists W_{j},s.t.W_{j}\perp V_{j} \;and\;V_{j+1}=W_{j}\oplus V_{j},j\in\mathbb{Z}

(4)\; W_{j} \perp W_{j_{1}},j\neq j_{1}

(5)\; g(t)\in W_{j}\Leftrightarrow g(2t)\in W_{j+1}

(6)\; \bigcup_{j\in \mathbb{Z}} W_{j}=L^{2}(\mathbb{R})

(7)\; if\: \exists \psi (t)\in W_{0},s.t.\{\psi(t-n);n\in \mathbb{Z}\}构成W_{0}O.N.B,则\psi(t)为正交小波

(1)(2)(3)结论的得出是显而易见的,现在我们证明(4)——(7):

证明:(4)\; W_{j} \perp W_{j_{1}},j\neq j_{1}

我们只需证明W_{j} \perp W_{j+1},j\in\mathbb{Z}.

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值