bzoj 3706 反色刷 | 一笔画

首先,对于一个连通子图,如果存在一个方案把 所有边都变成白色,这个方案一定可以只经过黑边。然后对于每一个子图,就是小时候玩的一笔画了。一个一笔画存在回到原点的方案当且仅当所有点的度数都是偶数,这样就可以判定可行性,如果可行,答案就是有黑边的极大连通子图个数。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>

#define md
#define ll long long
#define inf (int) 1e9
#define eps 1e-8
#define N 1000010
using namespace std;
struct yts { int x,t,l,ne;} e[2*N];
int vis[N],pos[N],v[N],sum[N],bl[N];
int tot=0,num=1;
void put(int x,int y,int l)
{
num++; e[num].x=x; e[num].t=y; e[num].l=l;
e[num].ne=v[x]; v[x]=num;
}
void dfs(int x)
{
vis[x]=1; pos[x]=tot;
for (int i=v[x];i;i=e[i].ne)
{
int y=e[i].t;
if (!vis[y]) dfs(y);
}
sum[tot]+=bl[x];
}
int main()
{
num=1;
int n,m,x,y,z;
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
put(x,y,z); put(y,x,z);
if (z==1) { bl[x]++; bl[y]++;}
}
for (int i=1;i<=n;i++)
if (!vis[i]) { tot++; dfs(i); }
int ans,ok,tt;
ans=0; for (int i=1;i<=tot;i++) ans+=sum[i]>0;
ok=0; for (int i=1;i<=n;i++) if (bl[x]&1) ok++;
scanf("%d",&tt);
for (int i=1;i<=tt;i++)
{
int opt,p;
scanf("%d",&opt);
if (opt==1)
{
scanf("%d",&p); p++;
int x=e[p<<1].x,y=e[p<<1].t;
if (e[p<<1].l==1)
{
if (bl[x]&1) ok--;
if (bl[y]&1) ok--;
bl[x]--; bl[y]--;
if (bl[x]&1) ok++;
if (bl[y]&1) ok++;

if (sum[pos[x]]>0) ans--;
sum[pos[x]]--; sum[pos[y]]--;
if (sum[pos[x]]>0) ans++;

e[p<<1].l=0; e[(p<<1)|1].l=0;
}
else
{
if (bl[x]&1) ok--;
if (bl[y]&1) ok--;
bl[x]++; bl[y]++;
if (bl[x]&1) ok++;
if (bl[y]&1) ok++;

if (sum[pos[x]]>0) ans--;
sum[pos[x]]++; sum[pos[y]]++;
if (sum[pos[x]]>0) ans++;

e[p<<1].l=1; e[(p<<1)|1].l=1;
}
}
else
{
if (ok) printf("-1\n"); else printf("%d\n",ans);
}
}
return 0;
}



已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页