bzoj 3706: 反色刷 (欧拉图+并查集)

3706: 反色刷

Time Limit: 30 Sec   Memory Limit: 128 MB
Submit: 40   Solved: 28
[ Submit][ Status][ Discuss]

Description

给一张无向图,边有黑白两种颜色,现在你有一堆反色刷,可以从任意点开始刷,经过若干条边后回到起点。
现在要询问至少需要多少个反色刷可以使这张图所有边都变成白色。
因为某种原因,边的颜色是会改变的,于是。。
需要支持以下操作:
1 x  把第x条边反色(编号从0~m-1)
2   询问当前图中最少需要多少个反色刷

Input

第一行两个整数n m表示这张图有n个点m条边
接下来m行 每行3个整数 u v c表示一条无向边和这条边的颜色(0为白色 1为黑色)
接下来一个整数q 表示有q个操作
接下来q行为操作 描述如上

Output

对于每个询问 输出一行一个整数
表示最少需要的反色刷个数 如果没有合法方案输出-1

Sample Input

6 6
1 2 1
2 3 1
1 3 1
4 5 1
5 6 1
4 6 1
14
2
1 0
2
1 1
1 2
2
1 3
1 4
1 5
2
1 3
1 4
1 5
2

Sample Output

2
-1
1
0
1

HINT

100%  n,m,q <= 1000000, c < 2,没有重边自环

Source

[ Submit][ Status][ Discuss]


题解:欧拉图+并查集

刚开始想的是因为是反色刷,所以刷过的边不能是白色的边,否则又出现了黑色的边。那么就是要求只利用黑边,所形成的图的连通块的个数,发现根本不可做。

因为这根本就是不对的,因为如果刚开始是白边,那么刷两次就可以让他仍然是白边。所以反色刷是有可能刷过白边的。

那么什么情况是无解的呢?就是存在点只考虑黑边的度不是偶数。

为什么呢?因为你要回到起点,并且使所有连通的黑边都被粉刷一次。如果说刷过的路径全是黑边的话,那么就是说图中存在欧拉路径,那么欧拉路径存在的条件就是所有点的度都是偶数。

那么我们如何考虑白边呢?可以发现白边的作用就是连接两个全黑的连通块。而且只要几个全黑的连通块连通,一定存在方案使他们可以一次刷下来。

那么最后的答案其实就是含黑边的连通块个数。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define N 1000003
using namespace std;
int fa[N],sum[N],ans,cnt,n,m;
int x[N],y[N],c[N],du[N];
int find(int x)
{
	if (fa[x]==x) return x;
	fa[x]=find(fa[x]);
	return fa[x];
}
int main()
{
	freopen("a.in","r",stdin);
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++) fa[i]=i;
	for (int i=1;i<=m;i++) {
		scanf("%d%d%d",&x[i],&y[i],&c[i]);
		int r1=find(x[i]); int r2=find(y[i]);
		if (r1!=r2) {
			if (sum[r1]&&sum[r2]) ans--;
			sum[r1]+=sum[r2]; fa[r2]=r1;
		}
		if (c[i]) {
			sum[r1]++; if (sum[r1]==1) ans++;
			du[x[i]]++; du[y[i]]++;
			if (du[x[i]]&1) cnt++;
			else cnt--;
			if (du[y[i]]&1) cnt++;
			else cnt--; 
		}
	}
	int q; scanf("%d",&q);
	for (int i=1;i<=q;i++) {
		int opt,now;
		scanf("%d",&opt);
		if (opt==1) {
			scanf("%d",&now); now++;
			int r1=find(x[now]);
			c[now]^=1;
			if (c[now]) {//变成黑边 
				sum[r1]++; if (sum[r1]==1) ans++;
				du[x[now]]++; du[y[now]]++;
			    if (du[x[now]]&1) cnt++;
			    else cnt--;
			    if (du[y[now]]&1) cnt++;
			    else cnt--; 
			}
			else {
				sum[r1]--; if (sum[r1]==0) ans--;
				du[x[now]]--; du[y[now]]--;
			    if (du[x[now]]&1) cnt++;
			    else cnt--;
			    if (du[y[now]]&1) cnt++;
			    else cnt--; 
			}
		}
		else {
			if (cnt) printf("-1\n");
			else printf("%d\n",ans);
		}
	}
}


已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页