O(logn*2^logn)和O(n*logn)算法

1.

for(int i = 1;i < n; i <<=1)
    for(int j = 0; j < i; j++)

这个嵌套循环:1+2+4+…+2^[log(n-1)]=2^[logn]-1=O(n);

2.

 for(int i = 0; i < = n; i ++){
     for(int j = 1; j < i; j+=j)
...

为O(logn*2^logn)。

3.

现在又遇到了大O界O(n*logn)

我们知道log1+log2+log3+…+logn的确界为n*logn,现在看看这个大O界:

分析如下:

O(nlogn)的算法关键是它建立了一个数组c[],c[i]表示长度为i的不下降序列中结尾元素的最小值,用K表示数组目前的长度,算法完成后K的值即为最长不下降子序列的长度。

具体点来讲:
设当前的以求出的长度为K,则判断a[i]和c[k]:
3.1.如果a[i]>=c[k],即a[i]大于长度为K的序列中的最后一个元素,这样就可以使序列的长度增加1,即K=K+1,然后现在的c[k]=a[i];

如果a[i]<c[k],那么就在c[1]...c[k]中找到最大的j,使得c[j]<a[i],然后因为c[j]<a[i],所以a[i]大于长度为j的序列的最后一个元素,那么就可以更新长度为j+1的序列的最后一个元素,即c[j+1]=a[i]。
算法复杂度的分析:
因为共有n个元素要进行计算;每次计算又要查找n次,所以复杂度是O(n^2),但是,注意到c[]数组里的元素的单调递增的,所以我们可以用二分法,查找变成了logn次。这样算法的复杂度就变成了O(nlogn)。
 include<iostream>
using namespace std;

int a[101],c[101];

int find(int len,int n){
    int left=1,right=len,mid;
    while(left<=right)
    {
     mid=(left+right)/2;
     if(c[mid]==n) return mid;
     else if(c[mid]>n) right=mid-1;
     else if(c[mid]<n) left=mid+1;
                      }
     return left;
    }

int main()
{
    int n,i,j,k,len;
    cin>>n;
    for(i=1;i<=n;i++)
    cin>>a[i];

    c[1]=a[1];
    len=1;

    for(i=1;i<=n;i++)
    {
     j=find(len,a[i]);
     c[j]=a[i];
     if(j>len)
     len=j;           
                     }

    cout<<len;
    system("pause");
    return 0;
    }
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值