Pytorch学习(二)

Pytorch tensorboard

使用SummaryWriter模块实现数据可视化
所用方法包括如下

 - 实例化方法——SummaryWriter('目录')
 - Image对象——Image.open('路径')
 - nparray转换——np.array('Image对象')
 - 绘制图片——writer.add_image('标签', numpy.array对象, step, dataformats)
 - 坐标轴绘制——writer.add_scalar('标签', y轴, x轴)
from torch.utils.tensorboard import SummaryWriter
from PIL import Image
import numpy as np

def test_tensorboard():
    writer = SummaryWriter('../logs')
    # 1)设置图片路径
    ants_img_path1 = '../datasets/data/train/ants_image/28847243_e79fe052cd.jpg'
    ants_img_path2 = '../datasets/data/train/ants_image/49375974_e28ba6f17e.jpg'
    bees_img_path1 = '../datasets/data/train/bees_image/29494643_e3410f0d37.jpg'
    bees_img_path2 = '../datasets/data/train/bees_image/129236073_0985e91c7d.jpg'
    # 2)用Image打开图片
    ants_img_PIL1 = Image.open(ants_img_path1)
    ants_img_PIL2 = Image.open(ants_img_path2)
    bees_img_PIL1 = Image.open(bees_img_path1)
    bees_img_PIL2 = Image.open(bees_img_path2)
    # 3)转化为numpy型
    ants_img_array1 = np.array(ants_img_PIL1)
    ants_img_array2 = np.array(ants_img_PIL2)
    bees_img_array1 = np.array(bees_img_PIL1)
    bees_img_array2 = np.array(bees_img_PIL2)
    # 4)绘制图片
    writer.add_image('ants', ants_img_array1, 1, dataformats='HWC')
    writer.add_image('ants', ants_img_array2, 2, dataformats='HWC')
    writer.add_image('bees', bees_img_array1, 1, dataformats='HWC')
    writer.add_image('bees', bees_img_array2, 2, dataformats='HWC')
    # 绘制坐标图
    for i in range(100):
        writer.add_scalar('y=x^3', pow(i,3), i)

    writer.close()

if __name__ == '__main__':
    test_tensorboard()
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于使用PyTorch进行分类问题的深度学习,你可以按照以下步骤进行: 1. 数据准备:首先,你需要准备好你的训练数据和测试数据。确保数据已经被正确标记,并且已经分为训练集和测试集。 2. 数据加载:使用PyTorch的DataLoader模块加载数据集。可以使用自定义的Dataset类来加载数据,并使用DataLoader将其转化为可供模型使用的小批量数据。 3. 搭建模型:定义一个神经网络模型。可以使用PyTorch提供的nn.Module类来创建自己的模型。对于分类问题,通常使用一个带有一层输出的全连接层。 4. 定义损失函数:选择合适的损失函数来度量模型预测结果与真实标签之间的差异。对于分类问题,可以使用元交叉熵损失函数(Binary Cross Entropy Loss)。 5. 选择优化器:选择一个优化器来更新模型参数。常见的优化器包括随机梯度下降(SGD)、Adam、RMSprop等。根据需求选择合适的优化器。 6. 训练模型:使用训练数据对模型进行训练。通过迭代训练数据的小批量样本,计算损失并反向传播更新模型参数。 7. 测试模型:使用测试数据评估模型的性能。计算模型在测试数据上的准确率、精确率、召回率等指标。 8. 调整超参数:根据模型在测试集上的性能,可以调整模型的超参数(如学习率、批量大小等)以获得更好的性能。 9. 预测新样本:使用训练好的模型对新样本进行预测。将新样本输入模型中,得到预测结果。 以上是一个基本的流程,你可以根据自己的需求进行相应的调整和扩展。希望对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值