指数函数e^x和对数函数lnx 导数的求导过程

前言:

所谓求导, 是指在求函数在x 处的变化率, 此时x 是不变的,  \Delta x 是变化的,
 \Delta x的变化会引起  \Delta y 的变化,  \frac{\Delta y}{\Delta x}  的比率, 当\Delta x趋于0
时, 这个 0/0 的极限比值 就是该处的导数.

所以说, 可导的函数, 其0/0极限都是同阶的. 如果你找到了这个比值, 你就找到了导函数.

指数函数和对数函数求0/0极限时都会用到自然对数e, 就是这个极限 \lim\limits_{n\rightarrow\infty}(1+\frac{1}{n})^{n}= e;

 

一:  y=e^{x} 指数函数的求导过程.

\lim\limits_{\Delta x\rightarrow\0}\frac{e^{x+\Delta x}-e^x}{\Delta x} =   e^{x}\lim\limits_{\Delta x\rightarrow\0}\frac{e^{\Delta x}-1}{\Delta x}

我们把x视为常数,把 e^{x} 提取了出来,后面是0/0 的极限,我们需要求出来.结果就有了.

改变一下形式, 令 e^{\Delta x} -1= t\Delta x = ln(1+t), 于是

\lim\limits_{\Delta x\rightarrow\0}\frac{e^{\Delta x}-1}{\Delta x} = \lim\limits_{t\rightarrow 0}{\frac{t}{ln(1+t))}}=\lim\limits_{t\rightarrow 0}{\frac{1}{(1/t)ln(1+t))}}=\lim\limits_{t\rightarrow 0}{\frac{1}{ln(1+t)^{1/t})}}

里边的这个式子   \lim\limits_{t\rightarrow 0}(1+t))^{1/t} 大家应该熟悉, 这就是自然数e 的定义,  可能大家看到的更多是这种形式吧   \lim\limits_{t\rightarrow\infty}(1+\frac{1}{t})^{t}

显然它们是等价的.

于是上面那个0/0 极限就是1了,

于是得证!

二: y=lnx 对数函数的求导过程.

\lim\limits_{\Delta x\rightarrow\0}\frac{ln(x+\Delta x)-lnx}{\Delta x} = \lim\limits_{\Delta x\rightarrow 0}\frac{ln(x+\Delta x)/x}{\Delta x} = \lim\limits_{\Delta x\rightarrow 0}\frac{ln(1+\Delta x/x)}{\Delta x} = \lim\limits_{\Delta x\rightarrow 0}\frac{(1/x)ln(1+\Delta x/x)}{\Delta x/x} = (1/x)\lim\limits_{\Delta x\rightarrow 0}\frac{ln(1+\Delta x/x)}{\Delta x/x} = (1/x)\lim\limits_{\Delta x\rightarrow 0}{ln(1+\Delta x/x)}^{\Delta x/x}= (1/x)\lim\limits_{t\rightarrow 0}{ln(1+t)}^{1/t}=(1/x))ln(e)=1/x

 

三. y=x^{n} 幂函数的求导过程

\lim\limits_{\Delta x\rightarrow\0}\frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}

按二项式展开 为 nx^{n-1}\Delta x + \varrho ((\Delta x)^{2})

其0/0极限高阶被消除, 其值为nx^{n-1}

 

当我知道了可导函数的导数是0/0 有极限时(同阶)有感而写的! 0/0存在极限是理解微分的关键,其值就是微分.

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值