e^x的导数

博客主要围绕数学中导数证明展开,先对e^x的导数为e^x进行了详细证明,通过设y = e^x,利用极限等知识逐步推导得出结果。之后补充证明了(a^x)′ = a^x lna,借助已证的(e^x)′ = e^x进行转化推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们都知道, e x e^x ex的导数为 e x e^x ex,但怎么证明呢?

y = e x y=e^x y=ex

y ′ = lim ⁡ Δ x → 0 e x + Δ x − e x Δ x y'=\lim\limits_{\Delta x\rightarrow 0}\dfrac{e^{x+\Delta x}-e^x}{\Delta x} y=Δx0limΔxex+Δxex

= e x × lim ⁡ Δ x → 0 e Δ x − 1 Δ x \qquad =e^x\times\lim\limits_{\Delta x\rightarrow 0}\dfrac{e^{\Delta x}-1}{\Delta x} =ex×Δx0limΔxeΔx1

∵ e = lim ⁡ x → 0 ( 1 + x ) 1 x \quad\because e=\lim\limits_{x\rightarrow 0} (1+x)^{\frac 1x} e=x0lim(1+x)x1

∴ lim ⁡ Δ x → 0 ( 1 + Δ x ) 1 Δ x = e \quad\therefore \lim\limits_{\Delta x\rightarrow 0}(1+\Delta x)^{\frac{1}{\Delta x}}=e Δx0lim(1+Δx)Δx1=e

y ′ = e x × lim ⁡ Δ x → 0 ( ( 1 + Δ x ) 1 Δ x ) Δ x − 1 Δ x \quad y'=e^x\times \lim\limits_{\Delta x\rightarrow 0}\dfrac{((1+\Delta x)^{\frac{1}{\Delta x}})^{\Delta x}-1}{\Delta x} y=ex×Δx0limΔx((1+Δx)Δx1)Δx1

= e x × lim ⁡ Δ x → 0 ( 1 + Δ x ) − 1 Δ x \qquad =e^x\times \lim\limits_{\Delta x\rightarrow 0}\dfrac{(1+\Delta x)-1}{\Delta x} =ex×Δx0limΔx(1+Δx)1

= e x × lim ⁡ Δ x → 0 Δ x Δ x \qquad =e^x\times \lim\limits_{\Delta x\rightarrow 0}\dfrac{\Delta x}{\Delta x} =ex×Δx0limΔxΔx

= e x \qquad =e^x =ex

所以 e x e^x ex的导数为 e x e^x ex

补充

证明: ( a x ) ′ = a x ln ⁡ a (a^x)'=a^x\ln a (ax)=axlna

解:
已证出 ( e x ) ′ = e x (e^x)'=e^x (ex)=ex,则 a x = ( e ln ⁡ a ) x = e x ln ⁡ a a^x=(e^{\ln a})^x=e^{x\ln a} ax=(elna)x=exlna

所以 ( a x ) ′ = ( e x ln ⁡ a ) ′ = e x ln ⁡ a × ln ⁡ a = a x ln ⁡ a (a^x)'=(e^{x\ln a})'=e^{x \ln a}\times \ln a=a^x\ln a (ax)=(exlna)=exlna×lna=axlna

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值