我们都知道, e x e^x ex的导数为 e x e^x ex,但怎么证明呢?
设 y = e x y=e^x y=ex
则 y ′ = lim Δ x → 0 e x + Δ x − e x Δ x y'=\lim\limits_{\Delta x\rightarrow 0}\dfrac{e^{x+\Delta x}-e^x}{\Delta x} y′=Δx→0limΔxex+Δx−ex
= e x × lim Δ x → 0 e Δ x − 1 Δ x \qquad =e^x\times\lim\limits_{\Delta x\rightarrow 0}\dfrac{e^{\Delta x}-1}{\Delta x} =ex×Δx→0limΔxeΔx−1
∵ e = lim x → 0 ( 1 + x ) 1 x \quad\because e=\lim\limits_{x\rightarrow 0} (1+x)^{\frac 1x} ∵e=x→0lim(1+x)x1
∴ lim Δ x → 0 ( 1 + Δ x ) 1 Δ x = e \quad\therefore \lim\limits_{\Delta x\rightarrow 0}(1+\Delta x)^{\frac{1}{\Delta x}}=e ∴Δx→0lim(1+Δx)Δx1=e
y ′ = e x × lim Δ x → 0 ( ( 1 + Δ x ) 1 Δ x ) Δ x − 1 Δ x \quad y'=e^x\times \lim\limits_{\Delta x\rightarrow 0}\dfrac{((1+\Delta x)^{\frac{1}{\Delta x}})^{\Delta x}-1}{\Delta x} y′=ex×Δx→0limΔx((1+Δx)Δx1)Δx−1
= e x × lim Δ x → 0 ( 1 + Δ x ) − 1 Δ x \qquad =e^x\times \lim\limits_{\Delta x\rightarrow 0}\dfrac{(1+\Delta x)-1}{\Delta x} =ex×Δx→0limΔx(1+Δx)−1
= e x × lim Δ x → 0 Δ x Δ x \qquad =e^x\times \lim\limits_{\Delta x\rightarrow 0}\dfrac{\Delta x}{\Delta x} =ex×Δx→0limΔxΔx
= e x \qquad =e^x =ex
所以 e x e^x ex的导数为 e x e^x ex
补充
证明: ( a x ) ′ = a x ln a (a^x)'=a^x\ln a (ax)′=axlna
解:
已证出
(
e
x
)
′
=
e
x
(e^x)'=e^x
(ex)′=ex,则
a
x
=
(
e
ln
a
)
x
=
e
x
ln
a
a^x=(e^{\ln a})^x=e^{x\ln a}
ax=(elna)x=exlna
所以 ( a x ) ′ = ( e x ln a ) ′ = e x ln a × ln a = a x ln a (a^x)'=(e^{x\ln a})'=e^{x \ln a}\times \ln a=a^x\ln a (ax)′=(exlna)′=exlna×lna=axlna