割圆术求圆周率的具体过程.


author: hjjdebug
date: 2025年 02月 05日 星期三 11:38:48 CST
description: 割圆术求圆周率的具体过程.



割圆术的基本概念就不讲了,容易理解,网上也大把大把的.
这里要说的是具体过程. 亲自试验一下,体验一下古人怎样把pi给割出来.

1. pi等于3为基础.

这个易得,圆内接6边形,是6个等边三角形, 把沿着圆周的6条边之和当成圆周长,
则为6个半径,3个直径, 所以pi约等于3.

2. 把内接多边形加倍,则内接多边形周边之和更接近于周长.

道理很容易理解,12边形比6边形周边长更接近圆周长,24边形比12边形更好…
这里有一个递推公式, 已知内接n边形边长,怎样求2n内接多边形边长.
我相信古人掌握了这个公式,至于他们是怎样得到了我不知道.

3 递推公式的证明

这里我用高中几何知识三角函数来证明一下.
命题可以简化为已知theta角的sin值,cos值,求二分之theta角的sin值
例如:
60度角sin值 1/2, cos值根号3除以2, pi近似值为3
割圆求30度角 sin值, cos值, pi近似值.

不会(不能)输入希腊字母及符号,只能用语言描述了.
cos(2theta)=cos(theta)cos(theta)-sin(theta)sin(theta)=1-2sin(theta)sin(theta);
推得
sin(theta)= 根号内(1-cos(2
theta))/2
换一种写法,
sin(theta/2)= 根号内(1-cos(theta))/2
就是所谓的半角公式.
知道sin((theta/2), 则pi的近似值为 sin(theta/2)*360/theta
现在,依据半角公式,勾股定理和pi的计算公式,我们可以割圆了,
相信古人早就会开方运算了,只是要保持后面的精度,前面计算过程的精度一定要给足.

多边形边数 余弦值 半角正弦值 pi 近似值
6 0.5 0.5 3

计算过程,本来我想用计算器的,因为只涉及开方运算, 但我还是嫌繁,改用了c 编程.
先给出结果,代码见后.

3. 割圆术的计算结果

$ ./main
n:6, con:0.5000000000, sin/2:0.5000000000, pi:3.0000000000
n:12, con:0.8660254038, sin/2:0.2588190451, pi:3.1058285412
n:24, con:0.9659258263, sin/2:0.1305261922, pi:3.1326286133
n:48, con:0.9914448614, sin/2:0.0654031292, pi:3.1393502030
n:96, con:0.9978589232, sin/2:0.0327190828, pi:3.1410319509
n:192, con:0.9994645875, sin/2:0.0163617316, pi:3.1414524723
n:384, con:0.9998661379, sin/2:0.0081811396, pi:3.1415576079
n:768, con:0.9999665339, sin/2:0.0040906040, pi:3.1415838921
n:1536, con:0.9999916334, sin/2:0.0020453063, pi:3.1415

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值