初等数学概论

----------------------------------------
author: hjjdebug
date:   2016年 01月 18日 星期一 21:36:50 CST
article: 初等数学概论
----------------------------------------
记得高中的哲学书上说的, 真理是相对的,没有永恒,绝对的真理。
而我们这里讨论的数学,却是永恒绝对的真理。 放之四海而皆准的,所以你值得花时间去研究它,掌握它。
数域的发展,从自然数经负数,分数到有理数,有理数经无理数到实数,实数经虚数到复数的过程。
在复数范围,仍然满足加法交换率,乘法交换率,乘法对加法的结合率公式。

虚数的引入,是为了满足n次方程应该有n个根问题。解决什么数的平方等于-1的问题。
在我们真实的三维空间里,平面几何,立体几何,物体长度是没有虚数这个概念的。
关于虚数的用途,在适当的时候再给出。通常所指的数,还是先局限于实数容易理解。

----------------------------------------
代数:
----------------------------------------
数学研究的命题是什么?
它首先研究的是数,
一个实数,在数轴上占据一个位置,两个数,就可以比较大小。可以相加,相减,相乘,
相除,一个数作为另一个数的指数,以另一个数为底以自己为真数求对数。
把自己做为一个角度(弧度)求三角函数或者其逆运算。 这就是初等数学的研究范畴。

加法交换率,乘法交换率,我从来都没有怀疑过,它特别的简单,而且我们就是这么算数的。
它反映的是数的运算,是与先后无关的,是与时间无关的,与地点无关的。
但乘法对加法的交换率,我就很担心。a(b+c) 为什么等于ab+ac.
这个问题,小学时就学过它,我问过我们的数学老师,他的答复是,大了你就懂了。
想一想,这个回答是很不负责任的, 那是不是他就不懂呢? 如果他不懂,那这个回答就算是负责任的了。
我一直这么用它,但却没有深懂,事隔这么多年,我从网上整理归纳了这个权威说法:

乘法对加法的分配率。
方法1:  乘法对加法的分配率是一个定理,由自然数乘法对加法的分配率来推论。
peano 公理下的证明, 数域扩张。从自然数说起
在Peano公理下,把2定义为1的唯一后继,并规定加法为n + 1 = n的后继.
数学到peano时期才找到这种方法来严格地描述自然数及其性质.
自然数满足科学归纳法。
在自然数下a(b+c)=ab+ac是自然的,这是由乘法的定义和加法的交换率所确定的
而自然数的分配律则完全依赖于自然数加、乘法的归纳定义.
由自然数扩张到有理数,交换率,结合率,分配率被保留了下来,因为有理数乘以一个大数都可以变成整数。
有理数向实数扩张,那么无理数运算还能满足这个规律吗? 能!因为任何一个无理数都被夹在两个相距任意小的两个有理数之间。
所以我们推论,整个实数域数据运算都满足于交换律,结合律,分配律。

方法2: 定义乘法对加法的分配率为公理。
反过来,我们也可以用另一种方式定义自然数:
把交换律,结合律,分配律定义为实数的性质,认为是公理。而自然数只是实数的子集。
先定义实数是满足一系列性质(其中就包括乘法分配律)的集合,再定义自然数是实数中以0(或者以1)开头的,满足归纳法性质的子集合.
这时自然数的分配律就完全由实数决定,而实数的分配律——如上面所说,就是我们定义实数时直接规定的,也就是说它是个公理.
类似地,什么整数、有理数以及复数,它们满足分配律都依赖于实数的分配律,
而它们归根结底是由实数的定义(公理)保证的.
顺便提一句,上面指出的两种方法正是数学中引入严格的实数概念的两种基本方式.
这是我第一次理直气壮的拿起了所有实数都满足加乘交换律这个武器,为我做演绎推理奠定了基础。
原来我们就生活在实数这个大的环境下。

代数公式是数学运算的一种表现形式。
阿拉伯的10个数字,是数的一种表示方式。
初等代数公式比较简单一些,但(a+b)的n次方的展开式(二项式定理)就比较抽像起来。
它涉及到组合概念

算数平均数大于等于几何平均数的证明,数学归纳法,用到了二项式定理.


----------------------------------------
平面几何
----------------------------------------
现在看看我们真实空间.
几何是数学的一个研究对象。
几何是数学的一个具体表现形式,是一个数学应用。
解析几何把几何和数学联系了起来,但几何开始是独立发展的。
欧几里德几何学给了我们严谨的思维方式。公理化的推导法则。
点,线,面, 三角形,圆是欧几里德几何的要素。
三角形是基础,由此可以延伸出多边形,圆是另一个完美的图形。
在数量上,由勾股定理统治着, 勾股定理的延伸是余弦定理.
三角形中有余弦定理,引入了角度,有正弦定理,引入了外接圆。
三角形有稳定性,有全等定理。
三角形有5心,内,外,垂,重,旁心。
内心定理易证明,角平分线性质。
外心定理易证明,垂直平分线性质。
旁心定理易证明,角平分线性质。
其实这些性质,用全等三角形也是一目了然的。
垂心定理,嗯,有点难度。方法是,先作出三个高线来,再证明它们交于一点。

利用4点共圆,可以找到角度关系,发现三条高线是垂足三角形的三个角平分线,故交于一点。

不用垂足三角形内心,直接用4点共圆角度关系也可以证明,顶点连二高线交点是第三边高线.

 

重心定理,需要计算一下,根据中位线定理,可以证明任意两条中线相交,交于2/3位置处,
故三个交点是重合的,只能是交于一点。
勾股定理统治者平面几何,相似三角形, 中位线也有数量关系。

勾股定理是第一个霸道定理,它断言,勾方加股方一定等于弦方。 这里数的概念开始升级!
勾股定理已经有很多种方法证明了,用正方形面积相等有一种或几种证法。

其实数学定理就是霸道定理,它断言三角形内角和都是180度, 它断言平行线必分割线段成比例.

那都是因为有了一定的条件,必定推出一定的结果. 就是说因为是有约束的,所以就有结论.它们2者是一起的.

----------------------------------------
三角
----------------------------------------
现在撇开数量,只研究角度关系,由此延伸出一门学问,叫三角公式。
三角公式有一个最基本的和差化积公式, 它断言两个角度之差的余弦等于
两个角度余弦之积加上两个角度正弦之积。 由此可以推论,0度角余弦等于1.
这是我见到的第二个霸道的公式了。

角度公式,它不管角度大小,不问余弦或正弦是有理数还是无理数,它已经断言,
数值肯定是相等的,你可以用这种方法,去计算这个值。尽管这个值,根本就没有办法
表达成一个具体的小数。它也不需要你去真的计算。
此时算数已经不重要了,它不需要你的真实计算了,它已经断言了。
自从有了无理数,数学就不需要你去计算了,因为你算不出一个具体的数了。只能用
一个符号表示它,看,这个数是根号2,那个数是根号3,根号3这个数比根号2那个数是大的。1个1.7多,1个1.4多,
我们把根号3推算到1千位,把根号2推算到1千位,已经没有什么意义了。

角度和差公式可以由笛卡尔坐标系(解析几何)证明,
其它都是推导。
由此推导出角度和差公式,倍角半角公式。积化和差公式。

三角形大角对大边的证明。
既然是大角,就可以做一个辅助线跟小角相等,与对边相交。
这样等腰三角形两边相等,而短边看是是三角形两边之和大于第三边。得证!

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值