初学枚举——拨钟问题(c++)
拨钟问题虽然可以采用暴力枚举求解,但寻找到该问题的局部,巧妙求解也是一个有趣的过程。
一、描述
有9个时钟,排成一个3*3的矩阵。现在需要用最少的移动,将9个时钟的指针都拨到12点的位置。共允许有9种不同的移动。如下表所示,每个移动会将若干个时钟的指针沿顺时针方向拨动90度。
移动 影响的时钟
1 ABDE
2 ABC
3 BCEF
4 ADG
5 BDEFH
6 CFI
7 DEGH
8 GHI
9 EFHI
输入
9个整数,表示各时钟指针的起始位置,相邻两个整数之间用单个空格隔开。其中,0=12点、1=3点、2=6点、3=9点。
输出
输出一个最短的移动序列,使得9个时钟的指针都指向12点。按照移动的序号从小到大输出结果。相邻两个整数之间用单个空格隔开。
二、分析
共9种移动方式,而每种移动方式最多进行3次,只需要在0到3间进行枚举。因为移动4次钟就会旋转360°回到原点,与密码锁问题里一个按钮按两次是一个原理。使用9重循环来暴力解决当然是能成功的,只需要在循环内部分别判断每个时钟的状态是否为0或者九个时钟的状态总和为0。
本文还是试图利用已有信息,寻找枚举的局部,简化问题。
如下图所示,我们把9种移动和时钟重合到一起,A——I对应1——9,此后移动和时钟都用数字1——9来表示。例如,从1指向2的箭头表示操作1号钟会对2号钟产生影响。而双箭头表示互相产生影响。别忘了,操作每个时钟也会对其本身产生影响。
操作1号钟或2号钟都会对其本身与另一个钟产生影响
操作5号钟会对其本身与2号钟产生影响
整个时钟阵列的互相影响关系
这种相互影响还是比较复杂的,直接从上图是难以分析。按照熄灯问题的思路,我们尝试把第一层三个时钟(1, 2,3)当做局部来处理,如果只考虑下层时钟对上层时钟的影响。则影响关系图可简化如下:
下层时钟对上层时钟的影响
不难发现,1 , 2,3号时钟仅分别受到4,5,6号时钟的影响,所以当1,2,3号时钟作为局部被确定后,4,5,6号钟的操做次数也就确定了。同理7、9号钟的操作由4,、6号钟的状态确定。在7、9号钟操作后,5号钟的状态也确定了,其状态是最终的判断条件之一。
此外,第三层时钟的状态是不确定的。我们注意到图中的蓝色箭头,7号钟和9号钟的状态都将由8号钟的操作决定。8号钟的移动操作目标是使自身状态为0,当8号钟操作完后,如果7号和9号钟的状态都为0,那么就认为第三层拨钟都变为了0。综上5、7、9号钟的状态就是最终的判断条件。
基本思路如下
注意:图中7,9钟的操作是由4,6钟状态决定的,与5没有关系;7,9操作虽然调整了5号的状态,但这是一种过程中影响,并非目的;8号钟的操作仅由8号钟自身状态决定,目的是调整自身的状态,但其也决定了7、9号钟的最终状态。
三、源代码
#include<iostream>
#include<string.h>
using namespace std;
int main()
{
int oriClock[10] = {
0 };//初始时钟状态
int curClock[10] = {
0 };//当前时钟状态
int move[10] = {
0 }; //移动操作次数
for (int i = 1; i < 10; ++i//读入
cin >> oriClock[i];
for (move