数据分析思维案例实战学习笔记

这篇博客详细记录了数据分析在国企、BAT等不同企业的实践应用,涵盖招聘解析、日常工作、专题分析、面试技巧等内容。作者强调了数据异常排查的重要性,并提供了案例。此外,还探讨了数据分析工具的使用,包括Excel、SQL和R语言的应用,以及数据分析的多元分析、电商、互联网金融和游戏等多个领域的案例分析。
摘要由CSDN通过智能技术生成

Part 1

一、国企

1. 招聘解析

工行:技术化、分为保守、职责模糊
招行:职位具体、要求宽泛、看重能力
广发:跟业务线、杂
电信:中规中矩

2. 工作模块

1) 日报、周报、月报:每天看数据、短期复盘、决策
2) 临时数据: 弄清本质需求
3) 工作技巧:机器人发日报、目标建立、寻找领导帮助

3. 专题分析

1)需求解读
原始需求、了解需求、本质需求。沟通
2)建立逻辑树
在这里插入图片描述

3)SQL提数及分析
sql提数三段论;分析(组成部分、数量比较、有何变化、各项分布、各项相关性)
4)撰写报告

4. 软技能、面试技巧

吹水、展示、时间管理、预判

二、BAT数据分析

1. 招聘解析

2. 日常工作

1)数据异常排查
前期准备:业务理解、指标口径、当前数据产出过程
方法论:判断是否异常:亲自看、时间轴拉长看是近期异常还是历史异常、看和该指标关联的其他指标或其他核心指标是否异常、找到一个关键人物提前沟通。
最大概率法则归类:假期效应、热点事件、活动影响、政策影响、底层系统故障(数据传输、存储、清洗有无问题)、统计口径(业务逻辑更改、指标计算方式)
闭环:持续跟踪后续数据是否异常;记录、沉淀、文档化;邮件化
案例:通过数据异常排查,找到新的增长点
2)融入专项被KPI
有目标: 紧贴项目KPI
有节奏:2—3周输出一份报告
有闭环:报告说人话、做人事
案列:今日头条新用户留存专项
第一阶段:新用户留存整体分析,摸清现状找到切入点
在这里插入图片描述
第二阶段:寻找优化切入点,一般是1-2个;
第三阶段:不断重复前面两个阶段,继续寻找其他切入点;同时进行竞品分析、用户流失分析、营销活动分析
个人理解:演绎思维(描述现象、分析原因、对策)
3)埋点、指标体系

3. 面试技巧

流量波动:
在这里插入图片描述

三个手机上常用APP:
商业模式、商业化变现:

三、中小企业数据分析

  1. 日常工作解析
    杂、多,

  2. 转型

  3. 业务线
    在这里插入图片描述
    在这里插入图片描述

四、数据分析工具

  1. 数据分析整体流程
    明确问题
    搭建框架
    数据提取
    数据处理
    数据分析
  • 2
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值