机器学习——支持向量机(SVM)

本文从逻辑回归引入支持向量机的概念,详细解释了支持向量机的工作原理,包括最大间隔分类器、函数间隔与几何间隔,并探讨了如何寻找最优间隔分类器。通过对训练集的分析,提出了最大化几何间隔的优化问题,揭示了支持向量机在解决线性可分问题中的优势。
摘要由CSDN通过智能技术生成

本文主要参考吴恩达《机器学习》课程,以及网上各个大牛们的博文。

支持向量机,是一种对线性和非线性数据进行分类的方法。它按以下方法工作:使用一种非线性映射,把原训练数据映射到较高的维上,在新的维上,它搜索最佳分离超平面。使用到足够高维上的、合适的非线性映射,两个类的数据总可以被超平面分开。与其他模型相比,支持向量机不太容易过拟合。

下面按照吴恩达《机器学习》的讲义顺序进行讲解。

1 从逻辑回归到支持向量机

支持向量机从本质上来讲,就是最大间隔分类器。

这边从逻辑回归引出支持向量机,以及它最重要的思路——最大间隔。

考虑逻辑回归:


换种思路,如下图,x是正类(y=1),o是负类(y=0),直线为分类超平面,A点离超平面很远,则预测A点为正类可信度很高,而C点离超平面很近,如果超平面稍有变化,可能C点就变成了负类,所以预测C点为正类的可信度比较低。


上图中,要把x类和o类分开,可以有无线多条分离直线,我们想找出“最好的”一条,使得两种类别中离分离直线最近的点,到分离直线的距离最大。这就是最大间隔分类器。

2    标记

考虑一个线性二元分类器:


3    函数间隔和几何间隔

1 函数间隔

给定一个样本点  ,其函数间隔:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值