生成式人工智能:现状、挑战与未来
中国互联网络信息中心2024年11月30日发布了《生成式人工智能应用发展报告(2024)》。
下面我们一起看下《报告》主要内容。
发展综述:快速崛起的技术新星
生成式人工智能基于算法、模型和规则生成各类内容。它的发展历经多个阶段,早期受计算能力和数据资源限制,进展缓慢。但深度学习的出现带来了转机,2014年生成对抗网络概念的提出更是重要里程碑。2022年ChatGPT的推出,让生成式人工智能走进大众视野,引发全球关注,随后众多企业积极投入研发。
【生成式人工智能发展历程的时间轴,图片来源:网络,侵删,本来想使用报告中图片,但是图片比较模糊,现图片表达内容基本一致,可参考原文】
在产业方面,我国人工智能产业规模不断扩大,体系更加全面,相关企业超4500家,核心产业规模接近6000亿元。生成式人工智能产品百花齐放,截至2024年7月,我国备案上线的服务大模型达190多个。而且,该技术与各行各业加速融合,从智能语音助手到智慧城市建设,应用广泛。
【备案信息,图片来源:报告原文】
从地域上看,北京、上海、广东等地凭借优势,成为生成式人工智能产业的领头羊,其备案产品数量占比较高。在融资方面,生成式人工智能备受青睐,OpenAI估值大幅增长,我国政府引导基金、民间资本和大型企业纷纷投入资金,推动行业发展。
【2024 年 1-9 月我国人工智能相关投融资案例分布情况,图片来源:报告原文】
政策环境:国内外协同规范发展
在政策方面,我国政府一直高度重视人工智能产业。早期出台了一系列发展规划和人才培养政策,近年来则侧重标准建设和行业规范,如《生成式人工智能服务管理暂行办法》等。地方政府也积极行动,多地发布相关政策,营造良好发展环境。
【2016年至今我国人工智能领域主要政策,图片来源:报告原文】
国际上,欧美亚各国政策差异明显。欧盟采取全面严格的立法策略,《人工智能法案》已生效。美国注重安全治理、创新和国际合作。英国强调人工智能在政府治理中的作用。日本、韩国、新加坡等亚洲国家也在积极制定政策,推动人工智能发展。
技术生态:创新驱动技术升级
技术生态上,新的IT技术栈架构为生成式人工智能提供了有力支撑。芯片层性能影响模型效能,推动芯片专业化发展;框架层降低模型开发门槛;模型层是核心,多种大模型不断涌现;应用层将技术转化为经济效益,形成发展闭环。深度学习框架在其中起到关键作用,促进了软硬件的协同发展。数据飞轮则通过闭环反馈系统,持续优化大模型性能。
多模态大模型的出现,拓展了生成式人工智能的应用场景。它融合多种数据类型,提升语义理解和跨模态处理能力,在自动驾驶等领域展现出巨大潜力。理解、生成、逻辑、记忆这四项基础能力,是迈向通用人工智能的关键。
智能体的繁荣推动了多领域智能化发展。智能体具有自主性,能在工业生产、科技研发、公共安全等多个领域发挥重要作用。同时,生成式人工智能技术的发展让无代码编程成为可能,普通用户也能创建智能体,未来围绕智能体将构建起更庞大的人工智能生态。
应用情况:用户与企业端全面开花
在应用方面,生成式人工智能在用户端和企业端都有出色表现。用户端以“AI助手”等形态与传统互联网产品融合,提供智能化体验。我国有2.3亿人使用过生成式人工智能产品,中青年、高学历网民使用更普遍。国产品牌应用更广泛,用户主要用于回答问题、办公、娱乐和创作等。
【各年龄段网民使用生成式人工智能产品比例,图片来源:报告原文】
企业端,各行业积极应用生成式人工智能实现智能化升级。降本增效是主要驱动力,在智慧交通、农业、科研等领域都取得了显著成效。例如,贵阳利用智能信控提升交通通行效率,中国农业大学发布“神农大模型2.0”助力农业发展。《报告》中详细介绍了应用场景,建议可以查阅原文详细了解。
从应用环节看,研发与服务环节率先升级,生产制造等环节虽面临挑战,但也在逐步推进。多模态能力拓展了应用边界,智能体成为连接用户与服务的新桥梁,在政务服务、企业运营等领域发挥重要作用。
发展难点:挑战重重待突破
然而,生成式人工智能的发展也面临诸多难点。算力瓶颈是首要问题,高性能芯片进口受限,国产芯片有差距,算力基础设施分布不均衡,模型应用的算力管理难度大。
高质量数据集相对匮乏,数据完整性和标注存在问题,数据产业生态不健全,企业间数据孤岛现象严重。行业应用场景也需进一步扩展,部分前沿领域探索不足,企业对大模型技术和安全性存在顾虑,智能化转型经验不足。
专业人才培养任重道远,新兴技术发展导致人才缺口加大,高校人才培养与实际需求有差距,未成年人相关教育不足。安全伦理问题也不容忽视,虚假信息、版权纠纷和误用滥用等风险对社会秩序构成威胁。
发展建议:多方举措共促发展
针对这些问题,我们有一系列应对建议。在算力芯片产业发展方面,要加强技术创新和研发投入,推动国际合作,提升算力集群管理调度能力。
数据资源开放共享上,建立公共数据利用制度,激发产业活力,保障数据安全。产业引导方面,对创新应用场景放宽准入,鼓励公有云应用,打造行业标杆。
人才教育培养上,高校开展实用性教育,中小学普及人工智能知识,完善海外人才引进机制。安全体系完善方面,动态完善监管体系,加强安全技术研究,注重公众宣传教育。
生成式人工智能发展前景广阔,但也面临诸多挑战。我们需要各方共同努力,突破技术瓶颈,规范行业发展,让这一技术更好地服务社会,创造美好的未来。
可关注公众号AI启智汇回复【GAI报告2024】获取pdf全文。