pytorch-cifar100学习资料汇总 - 基于PyTorch的CIFAR-100图像分类实践

pytorch-cifar100项目简介

pytorch-cifar100是一个基于PyTorch实现CIFAR-100数据集图像分类的开源项目。该项目实现了多种经典的深度学习网络模型,如ResNet、DenseNet、VGG等,为开发者提供了在CIFAR-100数据集上进行图像分类实验的代码范例。

CIFAR-100样例图

项目主要特性

  1. 支持多种经典网络模型,包括ResNet、DenseNet、VGG、GoogleNet等
  2. 提供完整的训练和测试流程
  3. 可视化训练过程(使用TensorBoard)
  4. 支持GPU加速训练

使用指南

环境要求

  • Python 3.6+
  • PyTorch 1.6.0+
  • TensorBoard 2.2.2 (可选)

快速开始

  1. 克隆项目仓库:
git clone https://github.com/weiaicunzai/pytorch-cifar100.git
cd pytorch-cifar100
  1. 安装依赖:
pip install -r requirements.txt
  1. 训练模型:
python train.py -net resnet18 -gpu
  1. 测试模型:
python test.py -net resnet18 -weights path_to_resnet18_weights_file

实现的网络模型

项目实现了以下经典网络模型:

  • VGG
  • ResNet
  • DenseNet
  • GoogleNet
  • MobileNet
  • ShuffleNet
  • SENet
  • ...等

详细的网络列表和相关论文链接可以在项目README中查看。

训练技巧

作者在训练过程中使用了一些常见的训练技巧:

  1. 学习率调整策略:初始lr=0.1,在第60、120、160个epoch时除以5
  2. 批量大小:128
  3. 权重衰减:5e-4
  4. 动量:Nesterov动量,系数0.9

这些超参数设置参考了论文《Improved Regularization of Convolutional Neural Networks with Cutout》

训练过程可视化

实验结果

项目在README中提供了详细的实验结果表格,包含了各个网络模型在CIFAR-100数据集上的参数量、Top1错误率、Top5错误率等指标。感兴趣的读者可以直接查看项目README的Results部分

总结

pytorch-cifar100项目为我们提供了在CIFAR-100数据集上进行图像分类实验的完整代码实现。无论你是想要学习PyTorch的使用,还是研究不同网络模型在CIFAR-100上的表现,这个项目都是一个很好的起点。建议读者clone项目代码,亲自动手实践,以加深对图像分类任务和各种网络模型的理解。

相关资源

希望这篇文章能帮助你更好地了解和使用pytorch-cifar100项目。如果你在学习过程中遇到任何问题,欢迎在项目GitHub页面提issue或讨论。祝你在图像分类领域的学习和研究一切顺利!

文章链接:www.dongaigc.com/a/pytorch-cifar100-learning-resources

https://www.dongaigc.com/a/pytorch-cifar100-learning-resources

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值