pytorch-cifar100项目简介
pytorch-cifar100是一个基于PyTorch实现CIFAR-100数据集图像分类的开源项目。该项目实现了多种经典的深度学习网络模型,如ResNet、DenseNet、VGG等,为开发者提供了在CIFAR-100数据集上进行图像分类实验的代码范例。
项目主要特性
- 支持多种经典网络模型,包括ResNet、DenseNet、VGG、GoogleNet等
- 提供完整的训练和测试流程
- 可视化训练过程(使用TensorBoard)
- 支持GPU加速训练
使用指南
环境要求
- Python 3.6+
- PyTorch 1.6.0+
- TensorBoard 2.2.2 (可选)
快速开始
- 克隆项目仓库:
git clone https://github.com/weiaicunzai/pytorch-cifar100.git
cd pytorch-cifar100
- 安装依赖:
pip install -r requirements.txt
- 训练模型:
python train.py -net resnet18 -gpu
- 测试模型:
python test.py -net resnet18 -weights path_to_resnet18_weights_file
实现的网络模型
项目实现了以下经典网络模型:
- VGG
- ResNet
- DenseNet
- GoogleNet
- MobileNet
- ShuffleNet
- SENet
- ...等
详细的网络列表和相关论文链接可以在项目README中查看。
训练技巧
作者在训练过程中使用了一些常见的训练技巧:
- 学习率调整策略:初始lr=0.1,在第60、120、160个epoch时除以5
- 批量大小:128
- 权重衰减:5e-4
- 动量:Nesterov动量,系数0.9
这些超参数设置参考了论文《Improved Regularization of Convolutional Neural Networks with Cutout》。
实验结果
项目在README中提供了详细的实验结果表格,包含了各个网络模型在CIFAR-100数据集上的参数量、Top1错误率、Top5错误率等指标。感兴趣的读者可以直接查看项目README的Results部分。
总结
pytorch-cifar100项目为我们提供了在CIFAR-100数据集上进行图像分类实验的完整代码实现。无论你是想要学习PyTorch的使用,还是研究不同网络模型在CIFAR-100上的表现,这个项目都是一个很好的起点。建议读者clone项目代码,亲自动手实践,以加深对图像分类任务和各种网络模型的理解。
相关资源
希望这篇文章能帮助你更好地了解和使用pytorch-cifar100项目。如果你在学习过程中遇到任何问题,欢迎在项目GitHub页面提issue或讨论。祝你在图像分类领域的学习和研究一切顺利!
文章链接:www.dongaigc.com/a/pytorch-cifar100-learning-resources
https://www.dongaigc.com/a/pytorch-cifar100-learning-resources