So-vits-svc-fork: 实时语音转换的开源解决方案

GUI界面

主要特性

So-vits-svc-fork相比原始项目增加了以下主要特性:

  1. 实时语音转换支持: 这是该项目最引人注目的特性之一,允许用户进行实时的语音转换,大大提升了交互性和应用场景。

  2. 改进的用户界面: 项目提供了图形用户界面(GUI)和统一的命令行界面(CLI),使得操作更加直观和便捷。

  3. 更快的训练速度: 训练速度提升了约2倍,极大地缩短了模型训练时间。

  4. 自动下载预训练模型: 无需手动安装fairseq,系统会自动下载所需的预训练模型。

  5. 更准确的音高估计: 使用CREPE算法提高了音高估计的准确性。

  6. 代码格式化: 使用black、isort、autoflake等工具对代码进行了全面的格式化,提高了代码的可读性和一致性。

  7. 简化的安装过程: 通过pip安装即可使用,大大降低了入门门槛。

安装方法

So-vits-svc-fork提供了多种安装方式,以适应不同用户的需求:

1. 一键安装(Windows)

对于Windows用户,项目提供了一键安装脚本。用户只需下载并运行install.bat文件,即可自动完成安装过程。这是最简单快捷的安装方式,特别适合不熟悉命令行操作的用户。

2. 使用pipx安装(实验性)

对于希望将So-vits-svc-fork安装到隔离环境的用户,可以尝试使用pipx进行安装:

# 安装pipx
python -m pip install --user pipx
python -m pipx ensurepath

# 安装so-vits-svc-fork
pipx install so-vits-svc-fork --python=3.11
pipx inject so-vits-svc-fork torch torchaudio --pip-args="--upgrade" --index-url=https://download.pytorch.org/whl/cu121
3. 手动安装

对于希望更灵活控制安装过程的用户,可以选择手动安装:

  1. 创建虚拟环境(推荐):
python3.11 -m venv venv
source venv/bin/activate  # Linux/MacOS
venv\Scripts\activate  # Windows
  1. 安装依赖:
python -m pip install -U pip setuptools wheel
pip install -U torch torchaudio --index-url https://download.pytorch.org/whl/cu121
pip install -U so-vits-svc-fork

使用方法

推理

So-vits-svc-fork提供了图形界面和命令行两种使用方式:

  1. 图形界面: 运行svc vc命令即可启动GUI界面。

  2. 命令行:

    • 实时转换(从麦克风输入):
      svc vc
      
    • 文件转换:
      svc infer source.wav -m model.pth -c config.json
      

值得注意的是,预训练模型可以从Hugging FaceCIVITAI下载。

训练

在开始训练之前,建议先对数据集进行预处理:

  1. 如果数据集中包含背景音乐,可以使用Ultimate Vocal Remover等软件去除背景音乐。

  2. 对于单一说话人的长音频文件,可以使用svc pre-split命令将其分割成多个文件。

  3. 对于多说话人的长音频文件,可以使用svc pre-sd命令进行说话人分离。

  4. 使用svc pre-classify命令可以手动分类音频文件。

训练过程的主要步骤如下:

svc pre-resample
svc pre-config
svc pre-hubert
svc train -t

高级功能与技巧

  1. 自动批量大小调整: 在config.json中将batch_size设置为auto-{init_batch_size}-{max_n_trials}(或简单地设置为auto),系统将自动增加批量大小直到出现OOM错误。

  2. 使用CREPE进行音高估计: 将svc pre-hubert命令替换为svc pre-hubert -fm crepe

  3. 使用ContentVec: 将svc pre-config命令替换为-t so-vits-svc-4.0v1

  4. 使用MS-iSTFT解码器: 将svc pre-config命令替换为svc pre-config -t quickvc

  5. 自动静音移除和音量归一化: 这些操作会自动执行,无需手动处理。

注意事项

  1. 在实时推理中,如果输入存在噪音,HuBERT模型可能会对噪音产生反应。考虑使用实时降噪应用程序,如RTX Voice

  2. GPU推理至少需要4GB的显存。如果无法正常工作,可以尝试使用CPU推理,因为它也足够快。

  3. 训练时,建议将数据集中的音频文件长度控制在10秒以内。

  4. 训练至少需要4GB的显存。建议根据显存容量尽可能增加config.json中的batch_size

结语

So-vits-svc-fork为语音转换爱好者和研究者提供了一个功能强大、易于使用的开源解决方案。通过实时语音转换、改进的用户界面和更快的训练速度,该项目大大降低了语音转换技术的使用门槛。无论您是想进行个人实验还是开发相关应用,So-vits-svc-fork都是一个值得尝试的工具。

文章链接:www.dongaigc.com/a/so-vits-svc-fork-real-time-voice-conversion
https:.//www.dongaigc.com/a/so-vits-svc-fork-real-time-voice-conversion

https://www.dongaigc.com/p/voicepaw/so-vits-svc-fork

www.dongaigc.com/p/voicepaw/so-vits-svc-fork

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值