卷积神经网络(CNN)基本介绍 及 CNN在图像识别中应用卷积操作的过程

"Convolutional"这个词来源于数学中的卷积(Convolution)操作。在数学和信号处理领域,卷积是一种数学运算,它结合了两个函数以产生第三个函数,这个函数表达了一个函数如何通过另一个函数的“形状”来改变。

在卷积神经网络(CNN)的上下文中,"Convolutional"指的是网络中的一种操作,即卷积层所做的操作。卷积层使用一组称为卷积核(或滤波器)的小矩阵来提取输入数据(如图像)的特征。这些卷积核在输入数据上滑动(或者说卷积),并在每个位置计算卷积核与输入数据的元素之间的点积,从而生成一个新值。这个过程在输入数据的整个区域上重复进行,生成一个特征图(feature map),它捕捉了输入数据中的特定特征。

卷积操作的关键特性包括:

  1. 局部连接:每个卷积核只与输入数据的一个局部区域相乘,而不是与整个输入数据的所有元素相乘。

  2. 权重共享:卷积核的权重在整个输入数据上是共享的,这意味着相同的卷积核参数被用来在不同位置提取特征。

  3. 空间不变性:由于权重共享,卷积操作能够检测到在不同位置出现的相同特征。

  4. 稀疏连接:卷积核通常只与输入数据的一个子集相乘,这使得网络更加稀疏,减少了参数的数量。

卷积操作使得CNN能够高效地处理图像数据,因为它能够捕捉到图像中的局部特征,并且通过权重共享减少了模型的复杂性。

CNN的全称是卷积神经网络(Convolutional Neural Network)。
是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。CNN的核心在于其能够自动从数据中学习到有用的特征表示。下面是卷积操作和特征提取的基本概念:

卷积操作

  1. 局部感知区域:卷积层通过滑动窗口(卷积核)在输入图像上进行局部感知,提取局部特征。

  2. 参数共享:卷积核的参数在整个输入图像上共享,这意味着同一个卷积核可以检测到整个图像中的相同特征。

  3. 空间不变性:通过卷积操作,CNN能够捕捉到图像中的特征,无论这些特征出现在图像的哪个位置。

  4. 多通道:在处理彩色图像时,每个通道(如RGB)都会独立地应用卷积核,然后合并结果。

特征提取

  1. 低级特征:在CNN的较低层次,卷积层通常能够提取出简单的特征,如边缘、角点、纹理等。

  2. 高级特征:随着网络层次的加深,卷积层能够组合低级特征以识别更复杂的模式,如物体的部分或整个物体。

  3. 池化层:通常在卷积层之后,池化层(如最大池化)用于降低特征的空间尺寸,减少参数数量和计算量,同时保持重要信息。

  4. 激活函数:如ReLU(Rectified Linear Unit),用于引入非线性,使得模型能够学习更复杂的函数。

  5. 全连接层:在网络的最后几层,全连接层将特征映射到最终的输出,如分类任务中的类别概率。

  6. 特征图:卷积层的输出通常称为特征图(feature map),它包含了输入数据在该层学到的特征表示。

训练过程

  1. 前向传播:输入图像通过卷积层、激活函数、池化层等,最终输出预测结果。

  2. 损失函数:根据预测结果和真实标签计算损失。

  3. 反向传播:根据损失函数计算梯度,并通过梯度下降等优化算法更新网络权重。

  4. 迭代优化:重复前向传播和反向传播,直到模型性能达到满意的水平。

CNN通过这些机制自动学习到数据的层次特征,而不需要手动设计特征提取器,这是它在图像处理任务中非常有效的原因之一。

卷积神经网络(CNN)在图像识别中应用卷积操作的过程可以概括为以下几个步骤:

  1. 输入图像:首先,图像数据被输入到CNN中。图像通常被表示为一个三维数组,其中两个维度是图像的宽度和高度,第三个维度是颜色通道(例如,RGB图像有3个通道)。

  2. 卷积层:卷积层是CNN的核心,它通过卷积操作提取图像的特征。每个卷积层包含多个卷积核(或滤波器),每个卷积核负责检测图像中的特定特征(如边缘、角点、纹理等)。

    • 局部感知:卷积核在图像上滑动,每次只覆盖图像的一个局部区域(即卷积核的大小)。
    • 参数共享:卷积核的权重在整个图像上共享,这意味着相同的权重被用来在不同位置提取特征。
    • 点积计算:卷积核与图像局部区域的元素进行逐点相乘,然后求和,得到一个新值,这个值是特征图上的一个元素。
  3. 激活函数:卷积操作后,通常会应用非线性激活函数(如ReLU),以引入非线性特性,使得网络能够学习更复杂的特征。

  4. 池化层:池化层(如最大池化)通常跟在卷积层后面,用于降低特征图的空间尺寸,减少参数数量和计算量,同时保留重要信息。

  5. 多个卷积和池化层:CNN通常包含多个卷积和池化层的组合,每个卷积层可以捕捉到更复杂的特征。随着网络层次的加深,低级特征被组合成高级特征。

  6. 全连接层:在卷积和池化层之后,特征图被展平并通过一个或多个全连接层,这些层将学习到的特征映射到最终的输出,如分类任务中的类别概率。

  7. 输出层:最后,输出层(通常是softmax层)将全连接层的输出转换为类别概率分布。

  8. 训练和优化:通过前向传播计算损失,然后通过反向传播更新网络权重,迭代优化网络的性能。

  9. 特征可视化:有时,为了理解CNN是如何工作的,可以可视化卷积核和特征图,以查看网络学习到的特征。

通过这些步骤,CNN能够自动从图像数据中学习到有用的特征表示,并用于图像识别任务。

卷积神经网络(CNN)在图像识别中应用卷积操作的过程可以通过以下示意图来表示:

输入图像 (Input Image)
[高度: H, 宽度: W, 通道数: C]

[卷积层1] 
卷积核1: [高度: h1, 宽度: w1]
卷积核2: [高度: h1, 宽度: w1]
...
卷积核n: [高度: h1, 宽度: w1]

[特征图1] (Feature Map 1)
[特征图2]
...
[特征图n]

[激活函数] (如ReLU)
[激活后的特征图1]
[激活后的特征图2]
...
[激活后的特征图n]

[池化层] (如最大池化)
[池化后的特征图1]
[池化后的特征图2]
...
[池化后的特征图n]

[卷积层2]
卷积核1: [高度: h2, 宽度: w2]
卷积核2: [高度: h2, 宽度: w2]
...
卷积核m: [高度: h2, 宽度: w2]

[特征图1]
[特征图2]
...
[特征图m]

[激活函数] (如ReLU)
[激活后的特征图1]
[激活后的特征图2]
...
[激活后的特征图m]

[池化层]
[池化后的特征图1]
[池化后的特征图2]
...
[池化后的特征图m]

...

[全连接层] (Fully Connected Layer)
[全连接层输出]

[输出层] (如Softmax)
[类别概率分布]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北京橙溪 www.enwing.com

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值