一个机器学习模型具体的编程例子:鸢尾花(iris)识别分类

数据集下载地址(一此常见的数据科学 Python 库,都集成了鸢尾花(iris)数据集)
https://github.com/jackgo2080/dataOpen/blob/main/iris.data

在这里插入图片描述
数据集详情
鸢尾花数据集共收集了三类鸢尾花,即Setosa鸢尾花、Versicolour鸢尾花和Virginica鸢尾花,每一类鸢尾花收集了50条样本记录,共计150条。
在这里插入图片描述
数据集包括4个属性,分别为花萼的长、花萼的宽、花瓣的长和花瓣的宽。对花瓣我们可能比较熟悉,花萼是什么呢?花萼是花冠外面的绿色被叶,在花尚未开放时,保护着花蕾。四个属性的单位都是cm,属于数值变量,四个属性均不存在缺失值的情况,字段如下:

sepal length(萼片长度)
sepal width(萼片宽度)
petal length(花瓣长度)
petal width (花瓣宽度)
Species(品种类别):分别是:Setosa、Versicolour、Virginica
单位都是厘米。

当然,以下是一个使用Python和scikit-learn库的机器学习模型编程示例,这个例子涵盖了数据预处理、模型选择、训练和评估的全过程。

假设我们正在处理一个分类问题,我们将使用著名的鸢尾花(Iris)数据集来演示这个过程。

1. 数据预处理

import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer

# 加载数据
iris = load_iris()
X = iris.data
y = iris.target

# 将数据集分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据清洗:这里我们假设数据集已经比较干净,不需要额外处理

# 缺失值处理
imputer = SimpleImputer(strategy='mean')  # 用均值填充缺失值
X_train = imputer.fit_transform(X_train)
X_test = imputer.transform(X_test)

# 特征选择:这里我们暂时使用所有特征,不进行特征选择

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

2. 选择模型

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC

# 决策树模型
dt = DecisionTreeClassifier(random_state=42)

# 随机森林模型
rf = RandomForestClassifier(random_state=42)

# 支持向量机模型
svm = SVC(random_state=42)

3. 训练模型

from sklearn.model_selection import GridSearchCV

# 决策树参数调优
param_grid_dt = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10]
}

grid_search_dt = GridSearchCV(dt, param_grid_dt, cv=5)
grid_search_dt.fit(X_train, y_train)

# 选择最佳参数的决策树模型
best_dt = grid_search_dt.best_estimator_

4. 评估模型

from sklearn.metrics import accuracy_score, recall_score, f1_score, classification_report

# 使用测试集评估模型
y_pred_dt = best_dt.predict(X_test)

# 计算评估指标
accuracy = accuracy_score(y_test, y_pred_dt)
recall = recall_score(y_test, y_pred_dt, average='macro')
f1 = f1_score(y_test, y_pred_dt, average='macro')

print(f"Accuracy: {accuracy}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")

# 打印分类报告
print(classification_report(y_test, y_pred_dt, target_names=iris.target_names))

这个例子中,我们首先对数据进行了预处理,包括缺失值处理和数据标准化。然后,我们选择了三种不同的机器学习模型:决策树、随机森林和支持向量机。为了优化决策树模型,我们使用了网格搜索(GridSearchCV)进行参数调优。最后,我们使用准确率、召回率和F1值作为评估指标来评估模型的性能,并打印了分类报告。

请注意,这只是一个简单的例子,实际应用中可能需要更复杂的数据预处理、特征工程、模型选择和参数调优步骤。此外,根据问题的具体情况,可能还需要考虑其他评估指标和模型。

完整代码

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer

# 加载数据
iris = load_iris()
X = iris.data
y = iris.target

# 将数据集分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据清洗:这里我们假设数据集已经比较干净,不需要额外处理

# 缺失值处理
imputer = SimpleImputer(strategy='mean')  # 用均值填充缺失值
X_train = imputer.fit_transform(X_train)
X_test = imputer.transform(X_test)

# 特征选择:这里我们暂时使用所有特征,不进行特征选择

# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
print(X_train, X_test)

#------------------------选择模型---------------------------

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC

# 决策树模型
dt = DecisionTreeClassifier(random_state=42)

# 随机森林模型
rf = RandomForestClassifier(random_state=42)

# 支持向量机模型
svm = SVC(random_state=42)

#------------------------训练模型---------------------------
from sklearn.model_selection import GridSearchCV

# 决策树参数调优
param_grid_dt = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10]
}

grid_search_dt = GridSearchCV(dt, param_grid_dt, cv=5)
grid_search_dt.fit(X_train, y_train)

# 选择最佳参数的决策树模型
best_dt = grid_search_dt.best_estimator_

#--------------------评估模型------------------------
from sklearn.metrics import accuracy_score, recall_score, f1_score, classification_report

# 使用测试集评估模型
y_pred_dt = best_dt.predict(X_test)

# 计算评估指标
accuracy = accuracy_score(y_test, y_pred_dt)
recall = recall_score(y_test, y_pred_dt, average='macro')
f1 = f1_score(y_test, y_pred_dt, average='macro')

print(f"Accuracy: {accuracy}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")

# 打印分类报告
print(classification_report(y_test, y_pred_dt, target_names=iris.target_names))

运行结果

[[-1.47393679  1.20365799 -1.56253475 -1.31260282]
 [-0.13307079  2.99237573 -1.27600637 -1.04563275]
 [ 1.08589829  0.08570939  0.38585821  0.28921757]
 [-1.23014297  0.75647855 -1.2187007  -1.31260282]
 [-1.7177306   0.30929911 -1.39061772 -1.31260282]
 [ 0.59831066 -1.25582892  0.72969227  0.95664273]
 [ 0.72020757  0.30929911  0.44316389  0.4227026 ]
 [-0.74255534  0.98006827 -1.27600637 -1.31260282]
 [-0.98634915  1.20365799 -1.33331205 -1.31260282]
 [-0.74255534  2.32160658 -1.27600637 -1.44608785]
 [-0.01117388 -0.80864948  0.78699794  0.95664273]
 [ 0.23261993  0.75647855  0.44316389  0.55618763]
 [ 1.08589829  0.08570939  0.55777524  0.4227026 ]
 [-0.49876152  1.87442714 -1.39061772 -1.04563275]
 [-0.49876152  1.4272477  -1.27600637 -1.31260282]
 [-0.37686461 -1.47941864 -0.01528151 -0.24472256]
 [ 0.59831066 -0.58505976  0.78699794  0.4227026 ]
 [ 0.72020757  0.08570939  1.01622064  0.8231577 ]
 [ 0.96400139 -0.13788033  0.38585821  0.28921757]
 [ 1.69538284  1.20365799  1.3600547   1.75755292]
 [-0.13307079 -0.36147005  0.27124686  0.15573254]
 [ 2.18297047 -0.13788033  1.64658307  1.22361279]
 [-0.2549677  -0.13788033  0.44316389  0.4227026 ]
 [-0.86445224  0.98006827 -1.33331205 -1.31260282]
 [ 2.30486738 -0.58505976  1.70388875  1.09012776]
 [-0.01117388 -0.80864948  0.21394119 -0.24472256]
 [-0.74255534  0.75647855 -1.33331205 -1.31260282]
 [-0.98634915  0.98006827 -1.39061772 -1.17911778]
 [-0.86445224  1.65083742 -1.04678367 -1.04563275]
 [-0.98634915 -2.37377751 -0.12989286 -0.24472256]
 [ 0.59831066 -0.80864948  0.67238659  0.8231577 ]
 [-1.23014297  0.75647855 -1.04678367 -1.31260282]
 [-0.98634915 -0.13788033 -1.2187007  -1.31260282]
 [-0.86445224  0.53288883 -1.16139502 -0.91214772]
 [-0.2549677  -0.80864948  0.27124686  0.15573254]
 [-0.86445224  0.75647855 -1.27600637 -1.31260282]
 [-0.13307079 -0.13788033  0.27124686  0.02224751]
 [ 2.30486738  1.65083742  1.70388875  1.35709783]
 [-1.47393679  0.30929911 -1.33331205 -1.31260282]
 [ 0.47641375 -0.36147005  0.32855254  0.15573254]
 [-0.13307079 -1.25582892  0.72969227  1.09012776]
 [-0.37686461  2.5451963  -1.33331205 -1.31260282]
 [ 0.23261993 -0.13788033  0.61508092  0.8231577 ]
 [-0.01117388 -0.80864948  0.78699794  0.95664273]
 [ 0.23261993 -1.92659808  0.15663551 -0.24472256]
 [-0.49876152 -0.13788033  0.44316389  0.4227026 ]
 [ 0.47641375  0.75647855  0.95891497  1.49058286]
 [-0.37686461 -1.70300836  0.15663551  0.15573254]
 [-0.49876152  1.87442714 -1.16139502 -1.04563275]
 [-0.98634915 -1.70300836 -0.24450422 -0.24472256]
 [ 0.72020757 -0.80864948  0.90160929  0.95664273]
 [-0.98634915  0.53288883 -1.33331205 -1.31260282]
 [-0.98634915  0.30929911 -1.4479234  -1.31260282]
 [-0.37686461 -1.47941864  0.04202416 -0.11123753]
 [ 1.08589829 -0.13788033  0.72969227  0.68967267]
 [-1.10824606  0.08570939 -1.27600637 -1.31260282]
 [-0.01117388 -0.58505976  0.78699794  1.62406789]
 [-0.98634915  0.75647855 -1.27600637 -1.31260282]
 [-0.98634915  0.98006827 -1.2187007  -0.77866269]
 [ 0.11072303  0.30929911  0.61508092  0.8231577 ]
 [-0.86445224 -1.25582892 -0.41642124 -0.11123753]
 [ 1.32969211  0.30929911  1.130832    1.49058286]
 [ 0.23261993 -0.80864948  0.78699794  0.55618763]
 [ 0.35451684 -1.0322392   1.07352632  0.28921757]
 [ 2.30486738 -0.13788033  1.3600547   1.49058286]
 [-0.37686461 -1.25582892  0.15663551  0.15573254]
 [-1.7177306  -0.36147005 -1.33331205 -1.31260282]
 [-1.83962751 -0.13788033 -1.50522907 -1.44608785]
 [ 0.23261993 -1.92659808  0.72969227  0.4227026 ]
 [ 1.69538284  0.30929911  1.30274902  0.8231577 ]
 [-1.47393679  0.08570939 -1.27600637 -1.31260282]
 [-0.86445224  0.98006827 -1.33331205 -1.17911778]
 [-1.7177306  -0.13788033 -1.39061772 -1.31260282]
 [ 0.59831066 -1.25582892  0.67238659  0.4227026 ]
 [ 0.59831066  0.75647855  1.07352632  1.62406789]
 [-1.47393679  0.75647855 -1.33331205 -1.17911778]
 [ 1.2077952  -0.13788033  1.01622064  1.22361279]
 [ 0.59831066  0.53288883  1.30274902  1.75755292]
 [-1.35203988  0.30929911 -1.39061772 -1.31260282]
 [ 0.35451684 -0.36147005  0.55777524  0.28921757]
 [ 0.84210448 -0.58505976  0.50046957  0.4227026 ]
 [ 0.47641375 -0.58505976  0.61508092  0.8231577 ]
 [ 1.45158902  0.30929911  0.55777524  0.28921757]
 [ 0.72020757  0.30929911  0.90160929  1.49058286]
 [-0.86445224  1.65083742 -1.2187007  -1.31260282]
 [ 1.32969211  0.08570939  0.95891497  1.22361279]
 [ 0.11072303 -0.13788033  0.27124686  0.4227026 ]
 [ 0.84210448 -0.13788033  0.84430362  1.09012776]
 [-0.13307079 -1.0322392  -0.12989286 -0.24472256]
 [-0.74255534 -0.80864948  0.09932984  0.28921757]
 [ 0.35451684 -0.13788033  0.50046957  0.28921757]
 [-1.5958337  -1.70300836 -1.39061772 -1.17911778]
 [ 0.96400139 -0.36147005  0.50046957  0.15573254]
 [-0.37686461 -1.0322392   0.38585821  0.02224751]
 [-0.62065843  1.4272477  -1.27600637 -1.31260282]
 [-0.2549677  -0.13788033  0.21394119  0.15573254]
 [ 1.81727975 -0.36147005  1.47466605  0.8231577 ]
 [ 1.08589829  0.53288883  1.130832    1.22361279]
 [-0.86445224  1.4272477  -1.27600637 -1.04563275]
 [-1.10824606 -1.47941864 -0.24450422 -0.24472256]
 [ 1.08589829  0.53288883  1.130832    1.75755292]
 [ 1.69538284 -0.13788033  1.18813767  0.55618763]
 [-1.10824606  1.20365799 -1.33331205 -1.44608785]
 [ 1.08589829  0.08570939  1.07352632  1.62406789]
 [-1.10824606 -0.13788033 -1.33331205 -1.31260282]
 [ 1.32969211  0.08570939  0.67238659  0.4227026 ]
 [ 1.93917666 -0.58505976  1.3600547   0.95664273]
 [ 0.59831066 -0.36147005  1.07352632  0.8231577 ]
 [-0.13307079 -0.58505976  0.21394119  0.15573254]
 [ 0.84210448 -0.13788033  1.01622064  0.8231577 ]
 [ 0.59831066 -1.70300836  0.38585821  0.15573254]
 [ 0.72020757 -0.36147005  0.32855254  0.15573254]
 [-0.2549677  -0.58505976  0.67238659  1.09012776]
 [ 0.11072303 -0.13788033  0.78699794  0.8231577 ]
 [-0.49876152  0.75647855 -1.16139502 -1.31260282]
 [ 0.35451684 -0.58505976  0.15663551  0.15573254]
 [-1.10824606 -1.25582892  0.44316389  0.68967267]
 [-0.01117388  2.09801686 -1.4479234  -1.31260282]
 [-0.01117388 -1.0322392   0.15663551  0.02224751]
 [ 1.57348593 -0.13788033  1.24544335  1.22361279]] [[ 0.35451684 -0.58505976  0.55777524  0.02224751]
 [-0.13307079  1.65083742 -1.16139502 -1.17911778]
 [ 2.30486738 -1.0322392   1.8185001   1.49058286]
 [ 0.23261993 -0.36147005  0.44316389  0.4227026 ]
 [ 1.2077952  -0.58505976  0.61508092  0.28921757]
 [-0.49876152  0.75647855 -1.27600637 -1.04563275]
 [-0.2549677  -0.36147005 -0.07258719  0.15573254]
 [ 1.32969211  0.08570939  0.78699794  1.49058286]
 [ 0.47641375 -1.92659808  0.44316389  0.4227026 ]
 [-0.01117388 -0.80864948  0.09932984  0.02224751]
 [ 0.84210448  0.30929911  0.78699794  1.09012776]
 [-1.23014297 -0.13788033 -1.33331205 -1.44608785]
 [-0.37686461  0.98006827 -1.39061772 -1.31260282]
 [-1.10824606  0.08570939 -1.27600637 -1.44608785]
 [-0.86445224  1.65083742 -1.27600637 -1.17911778]
 [ 0.59831066  0.53288883  0.55777524  0.55618763]
 [ 0.84210448 -0.13788033  1.18813767  1.35709783]
 [-0.2549677  -1.25582892  0.09932984 -0.11123753]
 [-0.13307079 -0.58505976  0.44316389  0.15573254]
 [ 0.72020757 -0.58505976  1.07352632  1.35709783]
 [-1.35203988  0.30929911 -1.2187007  -1.31260282]
 [ 0.35451684 -0.13788033  0.67238659  0.8231577 ]
 [-0.98634915  0.75647855 -1.2187007  -1.04563275]
 [ 0.72020757 -0.58505976  1.07352632  1.22361279]
 [ 2.5486612   1.65083742  1.53197172  1.09012776]
 [ 1.08589829 -0.13788033  0.84430362  1.49058286]
 [ 1.08589829 -1.25582892  1.18813767  0.8231577 ]
 [ 1.2077952   0.30929911  1.24544335  1.49058286]
 [-1.23014297 -0.13788033 -1.33331205 -1.17911778]
 [-1.23014297  0.08570939 -1.2187007  -1.31260282]]
Accuracy: 1.0
Recall: 1.0
F1 Score: 1.0
              precision    recall  f1-score   support

      setosa       1.00      1.00      1.00        10
  versicolor       1.00      1.00      1.00         9
   virginica       1.00      1.00      1.00        11

    accuracy                           1.00        30
   macro avg       1.00      1.00      1.00        30
weighted avg       1.00      1.00      1.00        30

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北京橙溪 www.enwing.com

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值