L = bwlabel(BW,n)
返回一个和BW大小相同的L矩阵,包含了标记了BW中每个连通区域的类别标签,这些标签的值为1、2、num(连通区域的个数)。n的值为4或8,表示是按4连通寻找区域,还是8连通寻找,默认为8。
四连通或八连通是图像处理里的基本感念:而8连通,是说一个像素,如果和其他像素在上、下、左、右、左上角、左下角、右上角或右下角连接着,则认为他们是联通的;4连通是指,如果像素的位置在其他像素相邻的上、下、左或右,则认为他们是连接着的,连通的,在左上角、左下角、右上角或右下角连接,则不认为他们连通。
[L,num] = bwlabel(BW,n)
这里num返回的就是BW中连通区域的个数。
举例说明: BW = 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 按4连通计算,方形的区域,和翻转的L形区域,有用是对角连接,不属于连通,所以分开标记,连通区域个数为3
L = bwlabel(BW,4)
结果如下:
L =
1 1 1 0 0 0 0 0
1 1 1 0 2 2 0 0
1 1 1 0 2 2 0 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 0 3 0
1 1 1 0 0 3 3 0
1 1 1 0 0 0 0 0
而8连通标记,它们是连通的:
[L, num] = bwlabel(BW,8)
L =
1 1 1 0 0 0 0 0
1 1 1 0 2 2 0 0
1 1 1 0 2 2 0 0
1 1 1 0 0 0 2 0
1 1 1 0 0 0 2 0
1 1 1 0 0 0 2 0
1 1 1 0 0 2 2 0
1 1 1 0 0 0 0 0
这里
num =
2
[r,c] = find(L==2); rc = [r c] rc = 2 5 3 5 2 6 3 6
regionprops
功能:用来度量图像区域属性的函数.语法:STATS = regionprops(L,properties)描 述:测量标注矩阵 L中每一个标注区域的一系列属性。L 中不同的正整数元素对应不同的区域, 例如:L 中等于整数1的元素对应区域1;L 中等于整数2的元素对应区域2;以此类推。返回值STATS 是一个长度为 max(L(:))的结构 数组,结构数组的相应域定义了每一个区域相应属性下的度量。 properties 可以是由逗号分割的字符串列表,包含字符串的单元 数组,单个字符串 'all' 或者 'basic'。如果 properties 等于字符串 'all',则所有下述字串列表中的度量数据都将被计算,如果properties 没有指定或者等于 'basic',则属性 'Area'、'Centroid' 和'BoundingBox' 将被计算。'Area' 图像各个区域中像素总个数 'BoundingBox' 包含相应区域的最小矩形 'Centroid' 每个区域的质心(重心)p3=im2bw(p3);[L,num]=bwlabel(p3,8); imshow(L);stats=regionprops(L,'Area'); clo=size(stats,1); disp('area……'); for i=1:clo disp(stats(i).Area); end