Python常用算法思想--递归算法思想详解【附源码】

本文深入探讨了递归算法的思想,并通过Python实现了解决阶乘、汉诺塔、斐波那契数列、最大公约数与最小公倍数、小球弹跳距离以及深度优先与广度优先搜索的经典递归算法案例。通过这些实例,读者可以更好地理解和应用递归解决问题。
摘要由CSDN通过智能技术生成

递归算法能够重复性的将问题分解为同类的子问题,然后解决这些子问题,最终达到解决最开始的问题为目的。以下从解决“阶乘”问题、“汉诺塔”问题、“斐波那契数列”问题、“最大公倍数和最小公约数”问题、“小球弹跳”、“深度优先”与“广度优先”问题等六个经典递归算法的案例进行介绍:

一、解决“阶乘”问题

阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是一个正整数的阶乘(factorial)是所有小于及等于正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。

亦即n!=1×2×3×...×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。

N的阶乘就是N*fact(N-1),具体代码如下:

def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n - 1)

# 测试
num = 5
print(f"{num}的阶乘是:{factorial(num)}")

二、解决“汉诺塔”问题

汉诺塔来之一个印度古老传说,大体意思是:寺庙有三根柱子,在一根柱子上从下往上按照大小顺序摞着64片圆盘,现状需要把圆盘从下面开始按大小顺序重新摆放在另一根柱子上,并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

hanoi 函数使用递归的方式解决汉诺塔问题。它接受四个参数:n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

helloshili2011

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值