非常的一个CNN的介绍视频:
youtube上非常好的一个CNN视频(B站)
B站某up主根据这个视频,进行了中文版的讲解
以下内容单纯用于自我阅读,不一定适合理解,建议为了了解CNN而来的朋友还是去看上面的视频。
简单来说,CNN就是,先卷积再用激活函数抹零,(这两个基本上会绑定在一起),和池化这两种手段组成。可以卷积抹零,卷积抹零,再池化,也可以,卷积抹零,池化,卷积抹零。
这两种手段的结合,最终生成的图,其中每一个值,都是全连接层的输入值,或者也可以叫特征。我们可以运用不同的卷积核,来完成这样的步骤,得到许多的特征。
全连接层的话,主要是由输入层与输出层构成,其中调节weights的方式,大多用反向调节。