CNN:卷积神经网络的原理,卷积、归一化、池化等

零、巴拉巴拉

参考视频链接(号称最好的卷积神经网络讲解视频):

https://www.bilibili.com/video/av16175135?from=search&seid=183876657971548042

本文仅介绍CNN的工作原理

一、前言

 1.1、CNN的作用

简单的讲,CNN的功能即为一个处理黑箱。输入一张图片的像素信息,经过CNN处理之后,输出该图片中的物体是什么。

即使图片经过平移、缩放、旋转、加厚等操作,仍然能有效识别出来。 

放一张数据结构打开图,这张图的详细步骤流程会在下文叙述

 1.2、图片信息

那么图片信息是如何表示的呢?

在计算机中,图片是以每个像素值所组成的矩阵表示的。在灰度图中,1表示白色,-1表示黑色。

那么怎么判断图片之间的相似性呢? 

如图所示的图片(旋转不变性),将其分为几个块,可以看出,虽然图像整体发生了变化,但是每个块内对应的子特征却没有变化。即认为两张图中的物体具有相似性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值