统计list数据中不同数据出现的频率

本文介绍三种使用Python统计列表中各元素出现频率的方法:利用字典、pandas库和collections模块的Counter类。通过实例展示了每种方法的具体实现及输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Method 1

data = [1,2,3,4,2,3,4,2,3,4,5,6,6,4,4,5,6,7,4]
data_dict = {}
for key in data:
    data_dict[key] = data_dict.get(key,0) + 1
print("data_dict:",data_dict)

输出结果:
data_dict: {1: 1, 2: 3, 3: 3, 4: 6, 5: 2, 6: 3, 7: 1}

Method 2:

import pandas as pd
data = [1,2,3,4,2,3,4,2,3,4,5,6,6,4,4,5,6,7,4]
result = pd.value_counts(data)
print("result:",result)

输出结果:(series)
result: 4 6
6 3
3 3
2 3
5 2
7 1
1 1
dtype: int64

Method 3:

from collections import Counter
data = [1,2,3,4,2,3,4,2,3,4,5,6,6,4,4,5,6,7,4]
result = Counter(data)
print("result:",result)

输出结果:
result: Counter({4: 6, 2: 3, 3: 3, 6: 3, 5: 2, 1: 1, 7: 1})
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值