Pascal VOC Challenge

PASCAL VOC是一项视觉对象分类识别和检测的基准测试,提供标准图像数据集和评估系统。挑战赛包含图像分类、识别、分割等任务,推动了计算机视觉算法的发展。参赛者需严格按规定使用数据,避免重复提交,确保公平性。
摘要由CSDN通过智能技术生成

补充:    PASCAL VOC (Visual Object Challenge)

   计算机视觉里面很大一块是在做物体的识别、检测还有分类(object recognition, detection and classification)。几乎在每一个应用领域都需要用到这三项功能,所以能否顺利的完成这三个功能,对检验一个算法的正确性和效率来说是至关重要的。所以每一个算法的设计者都会运用自己搜集到的场景图片对算法进行训练和检测,这个过程就逐渐的形成了数据集(dataset)。而不幸的是,这样形成的数据集存在着很大的偏向性。因为就算是作者可以的随机搜集图片,在筛选的时候也存在着作者对事物的主管判断,而这种判断在其他人眼中就会觉得不公平。同时为了比较不同的算法效率,设计者也会运用数据集来进行性能比较。所以如果你看的论文足够多的话,你会发现,大家的实验部分都会说:在某个数据集上我的算法是最牛X的;在某某数据集上我的算法和当前最牛X的其他地方差不多,但速度快/准确率高/误报率低;虽然我的算法在某数据集一般,但几个数据集做一下平均,我的最牛X……所以这些由算法设计者们创建的数据集并不是那么的有说服性。
       所以这就催生了 Pascal VOC Challenge 的出现,当让这不是唯一的一个‘标准’的数据集。Pascal 的全程是 Pattern Analysis, Statical Modeling and Computational Learning。PASCAL VOC 挑战赛是视觉对象的分类识别和检测的一个基准测试,提供了检测算法和学习性能的标准图像注释数据集和标准的评估系统。从2005年至今,该组织每年都会提供一系列类别的、带标签的图片,挑战者通过设计各种精妙的算法,仅根据分析图片内容来将其分类,最终通过准确率、召回率、效率来一决高下。如今,挑战赛和其所使用的数据集已经成为了对象检测领域普遍接受的一种标准。更多的自述和背景故事可以参见这篇官方提供的说明文件。
        起初Pascal 并不像现在这样完善和全面,刚开始委员会只提供了4个类别的图像,在2006年的时候增加到了10个类,2007年开始则增加到了20个类;同样是在2007年,加入了对人体轮廓布局(Person layout)的测试;测试图像的数量也由起初的1578张增加到了2007年高峰时期的9963张,随后的一年则出现了大幅下降,直到2010年图库数量重新达到高峰,并与2011

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值