- 博客(20)
- 资源 (6)
- 收藏
- 关注
原创 学习资料总结(一)
编译caffe常见问题 问题1编译caffe时,若使用opencv3.0及以上版本,make all可能会出错。解决:在Makefile文件大约195行后添加:opencv_imgcodecs opencv_videoio问题2libcublas.so.7.5: cannot open shared object file: No such file or directory解决:(1) 找到libcublas.so.7.5的位置(2) sudo gedit /ect/ld....
2020-05-22 11:28:35 271
原创 Ubuntu16.04编译SemanticFusion过程
环境(Ubuntu16.04 + cuda8.0 + GTX 1070)距离编译好ElasticFusion已经过去了很久,现在终于得空可以把之后做的一点工作记录下来。SemanticFusion是密集的三维语义建图,本次使用了NYU 数据集进行语义地图构建。1、编译ElasticFusion(这是编译SemanticFusion的首要任务)编译过程,可以查看我的博客虽然环境略...
2019-12-04 09:56:29 629
原创 2019秋招笔试总结
本人双非渣硕,现将秋招部分公司的笔试题小结,贡献给每一位需要的人。1、公司:联咏电子 岗位:AI算法(线下笔试)(1)特征提取的原则?简述几个特征提取方式及其描述子(2)欠拟合和过拟合,出现的原因?解决方法?(3)优化算法有哪些?优缺点?(4)利用所学知识设计算法,识别一个人的性别和年龄。(5)设计算法,实现在不停车的情况下根据不同的车型收取停车费。(6)3个C语言...
2019-10-15 21:03:11 1320 2
原创 Github上下载速度太慢
github上有很多开源代码,但是下载的速度太慢了,都是几k/s。首先在https://www.ipaddress.com/获取一下三个网址的ip:github.com github.global.ssl.fastly.net codeload.github.com写入C:\Windows\System32\drivers\etc\hosts文件(最下面)中。这是我获得的i...
2019-04-24 11:38:42 4758
原创 Ubuntu14.04调试ElasticFusion之TUM数据集的测试
本文将介绍如何使用其他RGBD数据集进行场景重建,以及估计轨迹和真实轨迹的对比实验。环境:ubuntu14.04 + cuda7.5 +GTX1070数据集:TUM数据集 TUM使用工具:png_to_klg性能评估工具:https://svncvpr.in.tum.de/cvpr-ros-pkg/trunk/rgbd_benchmark/rgbd_benchmark_tool...
2019-03-03 20:25:19 2096 5
原创 ubuntu14.04调试ElasticFusion之Kinect 的使用
上一篇文章详细介绍了在ElasticFusion上测试数据集的编译过程,接下来我将介绍下如何使用Kinect 1深度相机实时构建场景三维模型。环境:ubuntu14.04 + cuda7.5 + GTX 1070相机:Kinect 11、安装Kinect驱动cd OpenNI2git clone https://github.com/OpenKinect/libfreene...
2019-03-02 12:28:31 1209
原创 编译ElasticFusion过程(Ubuntu14.04)
Ubuntu14.04安装编译ElasticFusion过程环境(Ubuntu14.04+cuda7.5+GTX 1070)目前只是在数据集上进行了编译,之后我会在后面的博客中介绍采用传感器进行真实场景的三维重建过程。1、首先是安装各种依赖库sudo apt-get install cmake-qt-guisudo apt-get install gitsudo apt-ge...
2019-01-27 16:28:12 1591 5
原创 论文阅读笔记:Densely Connected Convolutional Networks(DenseNet)
发表载体:CVPR,2017,最佳论文作者信息:Gao Huang,Cornell University; Zhuang Liu, Tsinghua University ;Laurens van der Maaten, Facebook AI Research论文地址:论文下载代码:代码1、解决的问题深度卷积神经网络可以准确有效地解决各类问题,但是随着网络层数的加深,梯度...
2018-12-12 20:41:47 1121
原创 caffe学习笔记--网络结构分析
最近的事情比较多,忙过之后终于有时间整理一下思绪了。在做课题之余,把caffe框架的网络结构好好梳理了一番,希望可以帮助到有需要的人。solver.prototxttest_iter: 100 #预测阶段迭代次数为100,设置预测迭代次数为100可以覆盖全部的10000个测试集# Carry out testing every 500 training iterat...
2018-11-14 15:13:07 339
原创 Python2.7安装Numpy
环境:Python2.7、win10、Spyder1、下载对应版本的numpy的包 numpy-1.11.2-cp27-none-win_amd64.whl (我放在了E:\python)windows+R输入cmd,回车;E: 回车;cd python\Scripts2、pip install numpy的完整路径;pip之前最好更新下pip:python -m pip install -U p...
2018-05-22 19:53:09 25704 2
原创 RGBD-SLAM V2的学习和测试(一)
PC环境:Ubuntu14.04+ROS indigo+Opencv 2.4.10+PCL+RGBDSLAM v2下面就开始介绍每一个部分是如何安装的一、安装ROS(indigo)官网软件源安装步骤如下:1.选择中国科技大学USTC镜像文件sudo sh -c '. /etc/lsb-release && echo "deb http://mirrors.ust
2018-03-28 11:16:41 1219
原创 RGBD-SLAM V2的学习和测试(二)
PC环境:Ubuntu14.04+ROS indigo+Opencv 2.4.10+PCL+RGBDSLAM v2其中ROS indigo+Opencv 2.4.10+PCL+RGBDSLAM v2 的安装和测试我在另一篇文章中讲到了,大家可以自行去看地址:现在要讲的是在没有kinect深度相机的情况下,我们如何来测试RGBDSLAM v2这个系统。1、下载公开数据集(注意要下载成.bag格式)...
2018-03-25 12:18:27 1617 3
原创 卷积神经网络调参技巧(2)--过拟合(Dropout)
Dropout(丢弃)首先需要讲一下过拟合,训练一个大型网络时,因为训练数据有限,很容易出现过拟合。过拟合是指模型的泛化能力差,网络对训练数据集的拟合能力很好,但是换了其他的数据集,拟合能力就变差了。在训练深层网络模型时,按照一定的概率,暂时将神经元丢弃,得到一个更加简单的网络模型,即每一个batch训练的网络模型都是不一样的,都是原始网络的子集,这些子网络共享权值,与原始网络的层数、参数
2017-12-18 21:03:01 9430
原创 针对pascal voc2012数据集语义分割各类对象的颜色表示
最近一直在做语义分割的工作,终于将结果调试出来了。在最后一步中,将fc8中分割得到的.mat格式的结果,转换成.png格式的最终分割图像,但是发现并不是很清楚各颜色代表的类别,通过将create_labels.py程序中颜色的RGB值,在Matlab软件中绘制出来,才有了更加清晰的辨别,所以记录下来,方便大家的学习。 这是在基于deeplab v2调试得到的结果,采用的数据集是pascal
2017-12-13 09:35:19 8804 5
原创 图像语义分割概述
图像语义分割一、图像语义分割含义及原理含义:对分割后的图像加上语义标签(用不同的颜色代表不同类别的物体),就是给分割后图像中的每一类物体加上标签。要求(1)分割得到的不同区域内部平整,其纹理和灰度有相似性;(2)相邻语义分割区域对分割所依据的性质有明显的差异;(3)分割后不同语义区域的边界有明确且规整。二、DL(deep learning)时代的语义分割方法1、全卷
2017-10-14 14:29:30 14245
原创 关于卷积神网络(一)
采用迭代的算法来训练整个网络,随机设置网络参数的初始值(一般设置为0),将网络实际输出与期望输出的差值作为错误信号,通过梯度下降法反向传播到前层网络来更新权重和偏置,来更好的提取对象的特征。1、Batch normalization 用于优化网络模型结构,对网络中每一层的神经元输入,计算均值和方差后,再进行归一化;2、stride 卷积核滑动步长,如果每次滑动为1 ,感知域将会有很多重叠
2017-07-10 16:50:56 474
模型压缩之通道剪枝channel-pruning-master.zip
2019-08-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人