如何用50行代码构建情感分类器

选自Toward Data Science,作者:Rohith Gandhi,机器之心编译。

本文介绍了如何构建情感分类器,从介绍自然语言处理开始,一步一步讲述构建过程。


自然语言处理简介

语言把人类联系在一起。语言是一种工具,它既可以让我们把想法和感受传达给另一个人,也能让我们理解别人的想法和感受。我们大多数人从 1 岁半到 2 岁开始说话。人脑是如何在如此年幼的时候掌握如此大量知识的,这仍是未解之谜。但是,人们已经发现大部分语言处理功能发生在大脑皮层内。


情感分析背后的动机

人类自己无法理解语言是如何被大脑处理的。那么,我们能教一台机器学习我们的语言吗?通过广泛研究,人们已经开发了许多方法来帮助机器理解语言。自然语言处理(NLP)是研究人类语言与计算机交互的领域。自然语言处理的一个子问题是情感分析,即把一个语句分类为积极或消极。把语句分类为积极或消极有什么用呢?以亚马逊网站为例。在亚马逊上,用户可以对一个产品发表评论,说明它是好是坏,甚至可以是中性的。然而,使用人工阅读所有评论并获得客户对产品的总体反馈既昂贵又耗时。再说说我们的机器学习模型。机器学习模型可以通过大量数据进行推断,对评论进行分类。利用这种机器学习模型,亚马逊可以通过客户评论改进其产品,从而为公司带来更多收入。

情感分析并不像看起来那么简单。如果你认为含有「好的」、「很棒」等词的评论可归为积极评论,而含有「坏的」、「苦恼的」等词的评论可归为消极评论,那你需要三思。例如,「完全没有好味道」和「一份好的快餐,但没有什么特别的」分别代表消极和中立的反馈,即使都有「好」字。因此,这项任务可能没有看起来那么简单。接下来让我们看看即将使用的数据。


数据集

我们将使用亚马逊产品评论、IMDB 电影评论和 Yelp 评论来构建情感分析模型。

数据下载链接:kaggle.com/marklvl/sent

所有数据都已经过注释,0 表示消极反馈,1 表示积极反馈。亚马逊的数据与下图相似。

代码

我们可以写一些代码:

with open("/Users/rohith/Documents/Datasets/sentiment_labelled_sentences/amazon_cells_labelled.txt") as f1:
    lines = f1.readlines()

with open("/Users/rohith/Documents/Datasets/sentiment_labelled_sentences/imdb_labelled.txt") as f1:
    temp = f1.readlines()
    lines=lines+temp

with open("/Users/rohith/Documents/Datasets/sentiment_labelled_sentences/yelp_labelled.txt") as f1:
    temp = f1.readlines()
    lines=lines+temp

数据存储于不同的文本文件中。我们打开每个文件并阅读所有的文本行,文本行还包括每个文本的标签。然后我们将其存储在一个名为「lines」的列表中。

x = []
y = []
for value in lines:
    temp = value.split('\t')
    x.append(temp[0])
    temp[1].replace('\n','')
    y.append(int(temp[1]))

数据集的每一行都包含文本,文本后是四个字符空间,还有该文本的标签(0 或 1)。因此,我们先将包含文本的第一部分添加到 features(x) 中,然后获取标签,标签的末尾有「\n」。所以标签被移除,然后添加到我们的标签列表 labels(y)。

from keras.preprocessing.text import Tokenizer

tokenizer = Tokenizer(num_words=2500,split=' ')
tokenizer.fit_on_texts(x)

Keras 有一个内置的 API,使得准备计算文本变得更容易。tokenizer 类共有 4 个属性,可用于特征准备。请看下面的示例,了解 tokenizer 的实际功能。

## CODE
tokenizer = Tokenizer()
texts = ["The sun is shining in June!","September is grey.","Life is beautiful in August.","I like it","This and other things?"]
tokenizer.fit_on_texts(texts)
print(tokenizer.word_index)
tokenizer.texts_to_sequences(["June is beautiful and I like it!"])
## OUPUT
{'sun': 3, 'september': 4, 'june': 5, 'other': 6, 'the': 7, 'and': 8, 'like': 9, 'in': 2, 'beautiful': 11, 'grey': 12, 'life': 17, 'it': 16, 'i': 14, 'is': 1, 'august': 15, 'things': 10, 'shining': 13, 'this': 18}
[[5, 1, 11, 8, 14, 9, 16]]

tokenizer 为句子中的每个单词分配索引值,并且可以使用该索引值表示新句子。由于我们使用的文本语料库包含大量不同的单词,因此我们设置了一个上限,只使用最经常出现的 2500 个单词。

from keras.preprocessing.sequence import pad_sequences

X = tokenizer.texts_to_sequences(x)
X = pad_sequences(X)

现在,我们将文本转换为如上所示的数字序列,并填充数字序列。因为句子可以有不同的长度,它们的序列长度也会不同。因此,pad_sequences 会找出最长的句子,并用 0 填充其他较短语句以匹配该长度。

## Pad Sequences Example
pad_sequences([[1, 2, 3], [3, 4, 5, 6], [7, 8]])
array([[0, 1, 2, 3],
       [3, 4, 5, 6],
       [0, 0, 7, 8]], dtype=int32)


import numpy as np 
from sklearn.model_selection import train_test_split

Y = []
for val in y:
    if(val == 0):
        Y.append([1,0])
    else:
        Y.append([0,1])
Y = np.array(Y)

x_train, x_test, y_train, y_test = train_test_split(X,Y,train_size=0.8)

我们将标签转换为 one hot 编码,这有助于 LSTM 网络预测文本的标签。现在,我们已经准备好了文本数据,可以把它分为训练样本和测试样本。将 80% 的数据用于训练,20% 的数据用于测试模型。

import keras 
from keras.layers import Embedding, LSTM, Dense
from keras.models import Sequential

model = Sequential()
model.add(Embedding(2500,128,input_length=X.shape[1],dropout=0.2))
model.add(LSTM(300, dropout_U=0.2,dropout_W=0.2))
model.add(Dense(2,activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,optimizer='adam',metrics=['accuracy'])

model.fit(x_train,y_train,epochs=10,verbose=2,batch_size=32)

print(model.evaluate(x_test,y_test)[1])

我们现在建立了模型,并对其进行编译、训练和测试。该模型具有嵌入层。输入序列是文本的稀疏表征,因为词汇表巨大,并且给定单词将由大向量表示。如果我们能够构建序列的某种密集表征,那么网络将更容易进行预测。2500 个单词的词嵌入/密集表征是通过嵌入层对模型进行训练获得的。然后,我们将 LSTM 和密集层添加到模型中。LSTM 单元负责进行上下文推断,并帮助预测句子是否积极。密集层输出每个类的概率。本文不详细介绍 LSTM,若想了解其更多信息,请参阅此博客:colah.github.io/posts/2


输出

训练 测试

完成!你刚刚用 50 行代码构建了一个情感分类器~

原文链接:towardsdatascience.com/

以下是使用RNN实现情感分类代码示例: ``` import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Embedding, LSTM, SpatialDropout1D from sklearn.model_selection import train_test_split # 读取数据集 data = pd.read_csv('sentiment_analysis.csv') data = data[['text', 'sentiment']] data = data[data.sentiment != "Neutral"] data['text'] = data['text'].apply(lambda x: x.lower()) data['text'] = data['text'].apply((lambda x: re.sub('[^a-zA-z0-9\s]', '', x))) # 获取文本和标签 texts = data['text'].values labels = pd.get_dummies(data['sentiment']).values # 对文本进分词,并将每个词转换为数字 tokenizer = Tokenizer(num_words=2000, split=' ') tokenizer.fit_on_texts(texts) X = tokenizer.texts_to_sequences(texts) X = pad_sequences(X) # 划分数据集 X_train, X_test, Y_train, Y_test = train_test_split(X, labels, test_size=0.33, random_state=42) # 构建RNN模型 embed_dim = 128 lstm_out = 196 model = Sequential() model.add(Embedding(2000, embed_dim, input_length=X.shape[1])) model.add(SpatialDropout1D(0.4)) model.add(LSTM(lstm_out, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 batch_size = 32 model.fit(X_train, Y_train, epochs=10, batch_size=batch_size, verbose=2) # 评估模型 score, acc = model.evaluate(X_test, Y_test, verbose=2, batch_size=batch_size) print("score: %.2f" % (score)) print("acc: %.2f" % (acc)) ``` 在这个示例中,我们首先读取数据集并对文本进预处理。然后,我们使用Tokenizer将文本转换为数字,并使用pad_sequences将每个序列填充到相同的长度。然后,我们将数据集划分为训练集和测试集。 接下来,我们构建RNN模型。我们使用Embedding层将每个数字转换为向量,然后添加SpatialDropout1D层和LSTM层。最后,我们添加一个Dense层,并使用softmax激活函数对输出进分类。我们使用categorical_crossentropy作为损失函数,使用adam优化器进训练,并使用accuracy作为评估指标。 最后,我们训练模型并评估其性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值