从入门到登峰-嵌入式Tracker定位算法全景之旅 Part 7 |TinyML 定位:深度模型在 MCU 上的部署


Part 7 |TinyML 定位:深度模型在 MCU 上的部署

本章聚焦如何在 ESP32-S3 平台上,通过 TinyML 将深度学习模型应用到定位场景,包括特征提取、模型剪枝与量化、TensorFlow Lite for Microcontrollers 部署,以及在线微调与自适应策略。


一、为什么要用 TinyML?

  • 非线性特征挖掘:深度网络能从 CSI、RSSI 波形、天线阵列信号中学习复杂映射。

  • 端侧推理:本地推理无需持续联网,减少延迟与带宽成本。

  • 低功耗:经过剪枝与量化的模型,可在 MCU 上以数 mW 级功耗运行。


二、特征提取

  1. CSI vs RSSI

    • CSI(Channel State Information):抓取 Wi-Fi/蓝牙每个子载波的幅度与相位,特征维度高;

    • RSSI:单值功率指标,特征维度低,信息量有限。

  2. 时域/频域特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

damo王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值