有向图强连通分量_Tarjan

[点连通度与边连通度]

在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。一个图的点连通度的定义为,最小割点集合中的顶点数。

类似的,如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合。一个图的边连通度的定义为,最小割边集合中的边数。

[双连通图、割点与桥]

如果一个无向连通图的点连通度大于1,则称该图是点双连通的(point biconnected),简称双连通重连通。一个图有割点,当且仅当这个图的点连通度为1,则割点集合的唯一元素被称为割点(cut point),又叫关节点(articulation point)

如果一个无向连通图的边连通度大于1,则称该图是边双连通的(edge biconnected),简称双连通或重连通。一个图有桥,当且仅当这个图的边连通度为1,则割边集合的唯一元素被称为桥(bridge),又叫关节边(articulation edge)。

可以看出,点双连通与边双连通都可以简称为双连通,它们之间是有着某种联系的,下文中提到的双连通,均既可指点双连通,又可指边双连通。

[双连通分支]

在图G的所有子图G'中,如果G'是双连通的,则称G'为双连通子图。如果一个双连通子图G'它不是任何一个双连通子图的真子集,则G'为极大双连通子图双连通分支(biconnected component),或重连通分支,就是图的极大双连通子图。特殊的,点双连通分支又叫做

[求割点与桥]

该算法是R.Tarjan发明的。对图深度优先搜索,定义DFS(u)为u在搜索树(以下简称为树)中被遍历到的次序号。定义Low(u)为u或u的子树中能通过非父子边追溯到的最早的节点,即DFS序号最小的节点。

一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。 (2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)。

一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。

int dfs[NODE],low[NODE],cnt,vis[NODE],all;

int belong[NODE],scc[NODE];

stack<int>stk;

void tarjan(int u,int fa){

int j,v,flag;

dfs[u]=low[u]=cnt++;

vis[u]=1;

stk.push(u);

flag=0;

for(j=head[u];j!=-1;j=pedge[j].next){

v=pedge[j].to;

if(v==fa&&!flag){flag=1;continue;}//multiple edge

if(!vis[v])tarjan(v,u);

low[u]=min(low[u],low[v]);

}

if(dfs[u]==low[u]){

all++;

do{

v=stk.top();

stk.pop();

belong[v]=all;

scc[all]+=val[v];

}while(v!=u);

}

}

[求双连通分支]

下面要分开讨论点双连通分支与边双连通分支的求法。

对于点双连通分支,实际上在求割点的过程中就能顺便把每个点双连通分支求出。建立一个栈,存储当前双连通分支,在搜索图时,每找到一条树枝边或后向边(非横叉边),就把这条边加入栈中。如果遇到某时满足DFS(u)<=Low(v),说明u是一个割点,同时把边从栈顶一个个取出,直到遇到了边(u,v),取出的这些边与其关联的点,组成一个点双连通分支。割点可以属于多个点双连通分支,其余点和每条边只属于且属于一个点双连通分支。

对于边双连通分支,求法更为简单。只需在求出所有的桥以后,把桥边删除,原图变成了多个连通块,则每个连通块就是一个边双连通分支。桥不属于任何一个边双连通分支,其余的边和每个顶点都属于且只属于一个边双连通分支。

[构造双连通图]

一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图。把每个双连通子图收缩为一个顶点,再把桥边加回来,最后的这个图一定是一棵树,边连通度为1。

统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。  

[有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

image

直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法。

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,

Low(u)=Min{ DFN(u), Low(v),(u,v)为树枝边,u为v的父节点 DFN(v),(u,v)为指向栈中节点的后向边(非横叉边)}

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

算法伪代码如下

   
tarjan(u)
{
    DFN[u]=Low[u]=++Index                      // 为节点u设定次序编号和Low初值
    Stack.push(u)                              // 将节点u压入栈中
    for each (u, v) in E                       // 枚举每一条边
        if (v is not visted)               // 如果节点v未被访问过
            tarjan(v)                  // 继续向下找
            Low[u] = min(Low[u], Low[v])
        else if (v in S)                   // 如果节点v还在栈内
            Low[u] = min(Low[u], DFN[v])
    if (DFN[u] == Low[u])                      // 如果节点u是强连通分量的根
        repeat
            v = S.pop                  // 将v退栈,为该强连通分量中一个顶点
            print v
        until (u== v)
}

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

image

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

image

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

image

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

image

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与

求无向图的双连通分量(割点、桥)的Tarjan算法
scc,ans//权值最小的桥

idx,bridge;

dfs[]={-1};

int low[NODE],dfs[NODE];

void tarjan(int u,int id){

int i,v;

low[u]=dfs[u]=idx++;

for(i=head[u];i!=-1;i=edge[i].next){

v=edge[i].to;

if(i==(id^1))//处理父节点情况

continue;

if(dfs[v]==-1){

tarjan(v,i);

low[u]=low[u]>low[v]?low[v]:low[u];

if(low[v]>dfs[u]){

bridge++;

if(ans>edge[i].w)

ans=edge[i].w;

}

}

else

low[u]=low[u]>dfs[v]?dfs[v]:low[u];

}

scc++;





int V;

vector<int>G[2222];

vector<int>rG[2222];

vector<int>vs;

bool used[2222];

int cmp[2222];

void add_edge(int from,int to){

G[from].push_back(to);

rG[to].push_back(from);

}


void dfs(int v){

used[v]=true;

for(int i=0;i<G[v].size();i++){

if(!used[G[v][i]])

dfs(G[v][i]);

}

vs.push_back(v);

}

void rdfs(int v,int k){

used[v]=true;

cmp[v]=k;

for(int i=0;i<rG[v].size();i++){

if(!used[rG[v][i]])rdfs(rG[v][i],k);

}

}


int scc(){

memset(used,0,sizeof(used));

vs.clear();

for(int v=0;v<V;v++){

if(!used[v])

dfs(v);

}

memset(used,0,sizeof(used));

int k=0;

for(int i=vs.size()-1;i>=0;i--){

if(!used[vs[i]])rdfs(vs[i],k++);

}

return k;

}

 

 
1.求强连通分量、割点、桥、缩点:

对于Tarjan算法中,我们得到了dfnlow两个数组,

low[u]:=min(low[u],dfn[v])——(u,v)为后向边,v不是u的子树;

low[u]:=min(low[u],low[v])——(u,v)为树枝边,vu的子树;

下边对其进行讨论:

low[v]>=dfn[u],u为割点,节点v的子孙和节点u形成一个块。因为这说明v的子孙不能够通过其他边到达u的祖先,这样去掉u之后,图必然分裂为两个子图。这样我们处理点u时,首先递归u的子节点v,然后从v回溯至u后,如果发现上述不等式成立,则找到了一个割点u,并且u和v的子树构成一个块。

vis[]={0},head[]={0};

void tarjan(int x){

int i,v;

vis[x]=1,dfn[x]=low[x]=++num;

for(i=head[x];i;i=next[i]){

v=edge[i].to;

if(!vis[v])

{

tarjan(v);

low[x]=min(low[x],low[v]);

if(dfn[x]<=low[v]) vis[x]++;

}

else low[x]=min(low[x],dfn[v]);

}

if((x==1&&vis[x]>2)||(x>1&&vis[x]>1))

vis[x]=2;

else vis[x]=1;//v[x]=2表示该点为割点,注意其中第一个点要特判

}

low[v]>dfn[u],(u,v)为割边。 但是实际处理时我们并不这样判断,因为有的图上可能有重边,这样不好处理。我们记录每条边的标号(一条无向边拆成的两条有向边标号相同),记录每个点的父 亲到它的边的标号,如果边(u,v)是v的父亲边,就不能用dfn[u]更新low[v]。这样如果遍历完v的所有子节点后,发现low[v]=dfn[v],说明u的父亲边(u,v)为割边。

vis []={0};head[]={0};

void tarjan(int x){

int i,v;

vis[x]=1;dfn[x]=low[x]=++num;

for(i=head[x];i;i=edge[i].next){

v=edge[i].to;

if(!vis[v])

{

p[v]=fa[i];//记录父亲边

tarjan(v);

low[x]=min(low[x],low[v]);

}

else if(p[x]!=fa[i])//不是父亲边才更新

low[x]=min(low[x],dfn[v]);

}

if(p[x]&&low[x]==dfn[x]) bridge[p[x]]=1;//是割边

} 


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值