详解Attention机制及Tensorflow之attention_wrapper

0 - 前言

       近期想基于tensorflow开发一套翻译模型,无奈网上关于tensorflow及其attention相关接口更多的是使用,对其内部的具体实现机理却较少提及,故写此博客一探attention_wrapper之究竟,希望对同样需要的朋友有些帮助,如有错误,烦请指正。

        Google的工程师们为了让代码结构更安全、准确、完整、通用,在源代码中加入了较多的判断等相关辅助代码,这在一定程度上增加了理解难度,但代码质量很高,阅读源代码,受益良多!

1 - Attention mechanism

       基本的seq2seq模型由encoder、decoder组成,由encoder将输入编码为固定大小的final state,再由decoder将final state解码。其缺点显而易见,即在编码过程中,存在信息损失,这在解决长序列问题时尤为突出。Attention机制应运而生,并得到迅速推广应用。2014年,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》中,详述了attention 机制,并应用到机器翻译中。

图1: Attention model 1

来源: https://www.cnblogs.com/robert-dlut/p/5952032.html


图2: Attention model 2

来源:吴恩达老师deeplearning.ai课程

          如图1图2描述,解码器在解码过程中不使用信息损失较大的final state,而是把encoder每个编码单元的输出都“看”一遍,让模型自己学习如何分配“注意力”,即,继而求得,中间涉及到的求取、softmax等细节问题将在下节讲到。

2 - attention_wrapper.py

       讲解代码前,先将容易引起误解的变量含义说明一下:

  •  memory: “记忆”,指encoder的outputs
  •  query: decoder当前cell的输入隐藏状态,决定读取memory的哪些部分
     tf-1.3.0中,关于attention机制的代码位于tensorflow/contrib/seq2seq/python/ops/attention_wrapper.py文件中,该py文件主要包含4大块:

       1) Attention mechanism: 用来实现计算不同类型的attention vector(即context加权和后的向量),包括:

           a. class _BaseAttentionMechanism: 所有attention的基类

           b. class BahdanauAttention: 论文https://arxiv.org/abs/1409.0473中的实现: 


           c. class LuongAttention: 论文https://arxiv.org/abs/1508.04025中的实现: 


          d._BaseMonotonicAttentionMechanism,BahdanauMonotonicAttention,LuongMonotonicAttention还未研究,应该跟上述类似

       2) AttentionWrapperState类: 继承自namedtuple,类似rnn中的state(LSTMStateTuple),这里存储了cell_state, attention, time, alignments, alignments_history等信息

      3) AttentionWrapper: 将rnn cell与上述attention mechanism封装在一起,从而构建一个带有attention机制的Decoder

       4) 公用方法

3 - class AttentionWrapper

          接下来,BahdanauAttention为例,采用顺叙与插叙方式,以class AttentionWrapper为起点进行详述

def __init__(self,
             cell,
             attention_mechanism,
             attention_layer_size=None,
             alignment_history=False,
             cell_input_fn=None,
             output_attention=True,
             initial_cell_state=None,
             name=None):
  • cellrnn cell实例,可以是单个cell,也可以是多个cell stack后的mutli layer rnn
  • attention_mechanism: 上述的attention mechanism的实例,此处以BahdanauAttention为例
  • attention_layer_size用来控制我们最后生成的attention是怎么得来的,如果是None,则直接返回对应attention mechanism计算得到的加权和向量;如果不是None,则在调用_compute_attention方法时,得到的加权和向量还会与output进行concat,然后再经过一个线性映射,变成维度为attention_layer_size的向量
  • alignment_history主要用于后期的可视化,如果为真,则输出state中alignment_history为TensorArray,记录每个时刻的alignment
  • cell_input_fninput送入decoder cell的方式,默认是会将input和上一步计算得到的attention拼接起来送入decoder cell
  • output_attention是否返回attention,如果为False则直接返回rnn cell的输出,注意,无论是否为True,每一个时间步的attention都会存储在AttentionWrapperState的一个实例中
  • initial_cell_state: 初始状态,此时如果传入,需确保其batch_size与成员函数zero_state所需的参数一致
def __init__(self,
             cell,
             attention_mechanism,
             attention_layer_size=None,
             alignment_history=False,
             cell_input_fn=None,
             output_attention=True,
             initial_cell_state=None,
             name=None):

    super(AttentionWrapper, self).__init__(name=name)
    if not rnn_cell_impl._like_rnncell(cell):  # pylint: disable=protected-access
        raise TypeError(
            "cell must be an RNNCell, saw type: %s" % type(cell).__name__)
    if isinstance(attention_mechanism, (list, tuple)):
        self._is_multi = True
        attention_mechanisms = attention_mechanism
        for attention_mechanism in attention_mechanisms:
            if not isinstance(attention_mechanism, AttentionMechanism):
                raise TypeError(
                    "attention_mechanism must contain only instances of "
                    "AttentionMechanism, saw type: %s"
                    % type(attention_mechanism).__name__)
    else: # 此处只考虑self._is_multi为False的情况,即单个attention_mechanism
        self._is_multi = False
        if not isinstance(attention_mechanism, AttentionMechanism):
            raise TypeError(
                "attention_mechanism must be an AttentionMechanism or list of "
                "multiple AttentionMechanism instances, saw type: %s"
                % type(attention_mechanism).__name__)
        attention_mechanisms = (attention_mechanism,)

    # cell_input_fn默认将attention与input沿最后一维联结,返回当前cell的输入,此处可根据需要对
    # lambda函数进行修改,如lambda inputs, attention: attention
    if cell_input_fn is None:
        cell_input_fn = (
            lambda inputs, attention: array_ops.concat([inputs, attention], -1))
    else:
        if not callable(cell_input_fn):
            raise TypeError(
                "cell_input_fn must be callable, saw type: %s"
                % type(cell_input_fn).__name__)

    # attention_layer_size不为None时,以该值为参数定义Dense layer,并作为函数_compute_attention
    # 的参数,详见_compute_attention函数
    if attention_layer_size is not None:
        attention_layer_sizes = tuple(
            attention_layer_size
            if isinstance(attention_layer_size, (list, tuple))
            else (attention_layer_size,))
        if len(attention_layer_sizes) != len(attention_mechanisms):
            raise ValueError(
                "If provided, attention_layer_size must contain exactly one "
                "integer per attention_mechanism, saw: %d vs %d"
                % (len(attention_layer_sizes), len(attention_mechanisms)))
        self._attention_layers = tuple(
            layers_core.Dense(
                attention_layer_size, name="attention_layer", use_bias=False)
            for attention_layer_size in attention_layer_sizes)
        self._attention_layer_size = sum(attention_layer_sizes)
    else:
        self._attention_layers = None
        self._attention_layer_size = sum(
            attention_mechanism.values.get_shape()[-1].value
            for attention_mechanism in attention_mechanisms)

    self._cell = cell
    self._attention_mechanisms = attention_mechanisms
    self._cell_input_fn = cell_input_fn
    self._output_attention = output_attention
    self._alignment_history = alignment_history
    # 如果initial_cell_state为None,则在调用成员函数zero_state时进行初始化,如果不为None,
    # 需确保与zero_state的参数batch_size匹配
    with ops.name_scope(name, "AttentionWrapperInit"):
        if initial_cell_state is None:
            self._initial_cell_state = None
        else:
            final_state_tensor = nest.flatten(initial_cell_state)[-1]
            state_batch_size = (
                final_state_tensor.shape[0].value
                or array_ops.shape(final_state_tensor)[0])
            error_message = (
                "When constructing AttentionWrapper %s: " % self._base_name +
                "Non-matching batch sizes between the memory "
                "(encoder output) and initial_cell_state.  Are you using "
                "the BeamSearchDecoder?  You may need to tile your initial state "
                "via the tf.contrib.seq2seq.tile_batch function with argument "
                "multiple=beam_width.")
            with ops.control_dependencies(
                    self._batch_size_checks(state_batch_size, error_message)):
                self._initial_cell_state = nest.map_structure(
                    lambda s: array_ops.identity(s, name="check_initial_cell_state"),
                    initial_cell_state)
def zero_state(self, batch_size, dtype):
  with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
    if self._initial_cell_state is not None:
      cell_state = self._initial_cell_state
    else:
      cell_state = self._cell.zero_state(batch_size, dtype)
    error_message = (
        "When calling zero_state of AttentionWrapper %s: " % self._base_name +
        "Non-matching batch sizes between the memory "
        "(encoder output) and the requested batch size.  Are you using "
        "the BeamSearchDecoder?  If so, make sure your encoder output has "
        "been tiled to beam_width via tf.contrib.seq2seq.tile_batch, and "
        "the batch_size= argument passed to zero_state is "
        "batch_size * beam_width.")
    with ops.control_dependencies(
        self._batch_size_checks(batch_size, error_message)):
      cell_state = nest.map_structure(
          lambda s: array_ops.identity(s, name="checked_cell_state"),
          cell_state)
    return AttentionWrapperState(
        cell_state=cell_state,
        time=array_ops.zeros([], dtype=dtypes.int32),
        attention=_zero_state_tensors(self._attention_layer_size, batch_size,
                                      dtype),
        alignments=self._item_or_tuple(
            attention_mechanism.initial_alignments(batch_size, dtype)
            for attention_mechanism in self._attention_mechanisms),
        alignment_history=self._item_or_tuple(
            tensor_array_ops.TensorArray(dtype=dtype, size=0,
                                         dynamic_size=True)
            if self._alignment_history else ()
            for _ in self._attention_mechanisms))

zero_state: 返回AttentionWrapperState实例,作为初始参数

def call(self, inputs, state):
    """Perform a step of attention-wrapped RNN.

    - Step 1: Mix the `inputs` and previous step's `attention` output via
      `cell_input_fn`.
    - Step 2: Call the wrapped `cell` with this input and its previous state.
    - Step 3: Score the cell's output with `attention_mechanism`.
    - Step 4: Calculate the alignments by passing the score through the
      `normalizer`.
    - Step 5: Calculate the context vector as the inner product between the
      alignments and the attention_mechanism's values (memory).
    - Step 6: Calculate the attention output by concatenating the cell output
      and context through the attention layer (a linear layer with
      `attention_layer_size` outputs).

    Args:
      inputs: (Possibly nested tuple of) Tensor, the input at this time step.
      state: An instance of `AttentionWrapperState` containing
        tensors from the previous time step.

    Returns:
      A tuple `(attention_or_cell_output, next_state)`, where:

      - `attention_or_cell_output` depending on `output_attention`.
      - `next_state` is an instance of `AttentionWrapperState`
         containing the state calculated at this time step.

    Raises:
      TypeError: If `state` is not an instance of `AttentionWrapperState`.
    """
    if not isinstance(state, AttentionWrapperState):
        raise TypeError("Expected state to be instance of AttentionWrapperState. "
                        "Received type %s instead." % type(state))

    # Step 1: 调用self._cell_input_fn函数,求取cell_inputs
    cell_inputs = self._cell_input_fn(inputs, state.attention)
    cell_state = state.cell_state
    # Step 2: 调用self._cell,求取当前cell的cell_output, next_cell_state
    cell_output, next_cell_state = self._cell(cell_inputs, cell_state)

    cell_batch_size = (
        cell_output.shape[0].value or array_ops.shape(cell_output)[0])
    error_message = (
        "When applying AttentionWrapper %s: " % self.name +
        "Non-matching batch sizes between the memory "
        "(encoder output) and the query (decoder output).  Are you using "
        "the BeamSearchDecoder?  You may need to tile your memory input via "
        "the tf.contrib.seq2seq.tile_batch function with argument "
        "multiple=beam_width.")
    with ops.control_dependencies(
            self._batch_size_checks(cell_batch_size, error_message)):
        cell_output = array_ops.identity(
            cell_output, name="checked_cell_output")

    if self._is_multi:
        previous_alignments = state.alignments
        previous_alignment_history = state.alignment_history
    else:
        previous_alignments = [state.alignments]
        previous_alignment_history = [state.alignment_history]

    all_alignments = []
    all_attentions = []
    all_histories = []
    # Step 3: 计算当前cell的attention、alignments,详见下文
    for i, attention_mechanism in enumerate(self._attention_mechanisms):
        attention, alignments = _compute_attention(
            attention_mechanism, cell_output, previous_alignments[i],
            self._attention_layers[i] if self._attention_layers else None)
        alignment_history = previous_alignment_history[i].write(
            state.time, alignments) if self._alignment_history else ()

        all_alignments.append(alignments)
        all_histories.append(alignment_history)
        all_attentions.append(attention)

    attention = array_ops.concat(all_attentions, 1)
    next_state = AttentionWrapperState(
        time=state.time + 1,
        cell_state=next_cell_state,
        attention=attention,
        alignments=self._item_or_tuple(all_alignments),
        alignment_history=self._item_or_tuple(all_histories))
    # attention返回与否,都会保存在next_state中
    if self._output_attention:
        return attention, next_state
    else:
        return cell_output, next_state
def _compute_attention(attention_mechanism, cell_output, previous_alignments,
                       attention_layer):
  """Computes the attention and alignments for a given attention_mechanism."""
  # Step 3.1: 计算normalized alignments,shape [batch_size, memory_time],详见下文
  alignments = attention_mechanism(
      cell_output, previous_alignments=previous_alignments)
  # Step 3.2: 计算attention
  # Reshape from [batch_size, memory_time] to [batch_size, 1, memory_time]
  expanded_alignments = array_ops.expand_dims(alignments, 1)
  # Context is the inner product of alignments and values along the
  # memory time dimension.
  # alignments shape: [batch_size, 1, memory_time]
  # attention_mechanism.values shape is
  #   [batch_size, memory_time, attention_mechanism.num_units]
  # the batched matmul is over memory_time, so the output shape is
  #   [batch_size, 1, attention_mechanism.num_units].
  # we then squeeze out the singleton dim.
  context = math_ops.matmul(expanded_alignments, attention_mechanism.values)
  context = array_ops.squeeze(context, [1])
  # context为真正的attention,如果在构造AttentionWrapper时传入attention_layer_size,
  # 内部以此构造attention_layer(Dense layer),将cell_output、context联接作为输入,
  # 则输出attention的shape: [batch_size, attention_layer_size]
  if attention_layer is not None:
    attention = attention_layer(array_ops.concat([cell_output, context], 1))
  else:
    attention = context

  return attention, alignments

BahdanauAttention包含两部分:W1h + W2dt,详见下文。

# Step 3.1: 计算alignments
class BahdanauAttention(_BaseAttentionMechanism):
  """Implements Bahdanau-style (additive) attention.
  This attention has two forms.  The first is Bahdanau attention,
  The second is the normalized form.
  To enable the second form, construct the object with parameter
  `normalize=True`.
  """
  def __init__(self,
               num_units,
               memory,
               memory_sequence_length=None,
               normalize=False,
               probability_fn=None,
               score_mask_value=float("-inf"),
               name="BahdanauAttention"):
    """Construct the Attention mechanism.

    Args:
      num_units: 用以构造query_layer、memory_layer(俩个Dense layer),也是Decoder cell的
        number of hidden units.
      memory: ‘记忆’,指Encoder的output,shape [batch_size, max_time, ...].
      memory_sequence_length (optional): Encoder输入的真实长度,shape [batch_size],用以
        构造mask,将超出的padding部分全部置为-inf.
      normalize: Python boolean.  Whether to normalize the energy term.
      probability_fn: (optional) A `callable`.  将得分score转换为概率,默认@{tf.nn.softmax},
        其他可选@{tf.contrib.seq2seq.hardmax},@{tf.contrib.sparsemax.sparsemax}.
        Its signature should be: `probabilities = probability_fn(score)`.
      score_mask_value: (optional): 默认float('-inf')负无穷大,当memory_sequence_length
        不为None时,用于将超出的padding部分全部置为-inf.
      name: Name to use when creating ops.
    """
    if probability_fn is None:
      probability_fn = nn_ops.softmax
    wrapped_probability_fn = lambda score, _: probability_fn(score)
    # 详见下文
    super(BahdanauAttention, self).__init__(
        query_layer=layers_core.Dense(
            num_units, name="query_layer", use_bias=False),
        memory_layer=layers_core.Dense(
            num_units, name="memory_layer", use_bias=False),
        memory=memory,
        probability_fn=wrapped_probability_fn,
        memory_sequence_length=memory_sequence_length,
        score_mask_value=score_mask_value,
        name=name)
    self._num_units = num_units
    self._normalize = normalize
    self._name = name
# Step 3.1.1: 计算alignments之W1h(初始化时已经完成)
class _BaseAttentionMechanism(AttentionMechanism):
  """A base AttentionMechanism class providing common functionality.
  Common functionality includes:
    1. Storing the query and memory layers.
    2. Preprocessing and storing the memory.
  """
  def __init__(self,
               query_layer,
               memory,
               probability_fn,
               memory_sequence_length=None,
               memory_layer=None,
               check_inner_dims_defined=True,
               score_mask_value=float("-inf"),
               name=None):
    """Construct base AttentionMechanism class.
    Args:
      参数同上
    """
    if (query_layer is not None
        and not isinstance(query_layer, layers_base.Layer)):
      raise TypeError(
          "query_layer is not a Layer: %s" % type(query_layer).__name__)
    if (memory_layer is not None
        and not isinstance(memory_layer, layers_base.Layer)):
      raise TypeError(
          "memory_layer is not a Layer: %s" % type(memory_layer).__name__)
    self._query_layer = query_layer
    self._memory_layer = memory_layer
    if not callable(probability_fn):
      raise TypeError("probability_fn must be callable, saw type: %s" %
                      type(probability_fn).__name__)
    # _maybe_mask_score返回处理后的score,详见下文
    self._probability_fn = lambda score, prev: (  # pylint:disable=g-long-lambda
        probability_fn(
            _maybe_mask_score(score, memory_sequence_length, score_mask_value),
            prev))
    with ops.name_scope(
        name, "BaseAttentionMechanismInit", nest.flatten(memory)):
      # self._values是经过处理后的memory,其padding位置的值全部置为0,见下文
      # shape [batch_size, maxlen, num_encoder_units]
      self._values = _prepare_memory(
          memory, memory_sequence_length,
          check_inner_dims_defined=check_inner_dims_defined)
      # 此处通过Dense layer计算W1h,并保存在self._keys中,因h在Encoder完成后不在变化,因此该项
      # 在初始化时已经计算完成,shape [batch_size, maxlen, num_units]
      self._keys = (
          self.memory_layer(self._values) if self.memory_layer  # pylint: disable=not-callable
          else self._values)
      self._batch_size = (
          self._keys.shape[0].value or array_ops.shape(self._keys)[0])
      # self._alignments_size = maxlen
      self._alignments_size = (self._keys.shape[1].value or
                               array_ops.shape(self._keys)[1])
# Step 3.1.1: 计算alignments之W1h
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
  if memory_sequence_length is None:
    return score
  message = ("All values in memory_sequence_length must greater than zero.")
  with ops.control_dependencies(
      [check_ops.assert_positive(memory_sequence_length, message=message)]):
    # 返回score_mask,shape [batch_size, maxlen]
    score_mask = array_ops.sequence_mask(
        memory_sequence_length, maxlen=array_ops.shape(score)[1])
    score_mask_values = score_mask_value * array_ops.ones_like(score)
    # 将score中对应score_mask为False的位置的值换为score_mask_values(负无穷大)
    return array_ops.where(score_mask, score, score_mask_values)
# Step 3.1.1: 计算alignments之W1h
def _prepare_memory(memory, memory_sequence_length, check_inner_dims_defined):
  """Convert to tensor and possibly mask `memory`.
  Args:
    memory: `Tensor`, shape: [batch_size, max_time, ...].
    memory_sequence_length: `int32` `Tensor`, shaped `[batch_size]`.
    check_inner_dims_defined: Python boolean.  If `True`, the `memory`
      argument's shape is checked to ensure all but the two outermost
      dimensions are fully defined.
  Returns:
    A (possibly masked), checked, new `memory`.

  Raises:
    ValueError: If `check_inner_dims_defined` is `True` and not
      `memory.shape[2:].is_fully_defined()`.
  """
  memory = nest.map_structure(
      lambda m: ops.convert_to_tensor(m, name="memory"), memory)
  if memory_sequence_length is not None:
    memory_sequence_length = ops.convert_to_tensor(
        memory_sequence_length, name="memory_sequence_length")
  if check_inner_dims_defined:
    def _check_dims(m):
      if not m.get_shape()[2:].is_fully_defined():
        raise ValueError("Expected memory %s to have fully defined inner dims, "
                         "but saw shape: %s" % (m.name, m.get_shape()))
    nest.map_structure(_check_dims, memory)
  if memory_sequence_length is None:
    seq_len_mask = None
  else:
    # seq_len_mask,shape [batch_size, maxlen]
    seq_len_mask = array_ops.sequence_mask(
        memory_sequence_length,
        maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
        dtype=nest.flatten(memory)[0].dtype)
    seq_len_batch_size = (
        memory_sequence_length.shape[0].value
        or array_ops.shape(memory_sequence_length)[0])
  def _maybe_mask(m, seq_len_mask):
    rank = m.get_shape().ndims
    rank = rank if rank is not None else array_ops.rank(m)
    extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
    m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
    if memory_sequence_length is not None:
      message = ("memory_sequence_length and memory tensor batch sizes do not "
                 "match.")
      with ops.control_dependencies([
          check_ops.assert_equal(
              seq_len_batch_size, m_batch_size, message=message)]):
        # reshape seq_len_mask from [batch_size, maxlen] to [batch_size, maxlen, 1,...],
        # 用以broadcast,memory shape [batch_size, maxlen, num_encoder_units]
        seq_len_mask = array_ops.reshape(
            seq_len_mask,
            array_ops.concat((array_ops.shape(seq_len_mask), extra_ones), 0))
        return m * seq_len_mask
    else:
      return m
  # 将memory中padding位置的值全部置为0
  return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask), memory)
# Step 3.1.2: 计算W2dt及alignments
# BahdanauAttention: __call__
def __call__(self, query, previous_alignments):
    """Score the query based on the keys and values.
    Args:
      query: 当前cell的output,shape [batch_size, query_depth].
      previous_alignments: Tensor of dtype matching `self.values` and shape
        [batch_size, alignments_size],(`alignments_size` is memory's `max_time`).

    Returns:
      alignments: Tensor of dtype matching `self.values` and shape
        `[batch_size, alignments_size]` (`alignments_size` is memory's `max_time`).
    """
    with variable_scope.variable_scope(None, "bahdanau_attention", [query]):
        # 通过Dense layer计算第二项W2dt,该项与当前cell的output有关
        processed_query = self.query_layer(query) if self.query_layer else query
        # 计算unnormalized score,shape [batch_size, maxlen_of_memory],详见下文
        score = _bahdanau_score(processed_query, self._keys, self._normalize)
    # 返回normalized alignments,shape [batch_size, maxlen_of_memory],score是经过
    # mask -inf后的,normalize之后,padding位置的alignment为0
    alignments = self._probability_fn(score, previous_alignments)
    return alignments
# Step 3.1: 计算alignments
def _bahdanau_score(processed_query, keys, normalize):
  """Implements Bahdanau-style (additive) scoring function.

  This attention has two forms.  The first is Bhandanau attention.
  The second is the normalized form.
  To enable the second form, set `normalize=True`.
  Args:
    processed_query: Tensor, shape `[batch_size, num_units]` to compare to keys.
    keys: Processed memory, shape `[batch_size, max_time, num_units]`.
    normalize: Whether to normalize the score function.

  Returns:
    A `[batch_size, max_time]` tensor of unnormalized score values.
  """
  dtype = processed_query.dtype
  # Get the number of hidden units from the trailing dimension of keys
  num_units = keys.shape[2].value or array_ops.shape(keys)[2]
  # Reshape from [batch_size, ...] to [batch_size, 1, ...] for broadcasting.
  processed_query = array_ops.expand_dims(processed_query, 1)
  v = variable_scope.get_variable(
      "attention_v", [num_units], dtype=dtype)
  if normalize:
    # Scalar used in weight normalization
    g = variable_scope.get_variable(
        "attention_g", dtype=dtype,
        initializer=math.sqrt((1. / num_units)))
    # Bias added prior to the nonlinearity
    b = variable_scope.get_variable(
        "attention_b", [num_units], dtype=dtype,
        initializer=init_ops.zeros_initializer())
    # normed_v = g * v / ||v||
    normed_v = g * v * math_ops.rsqrt(
        math_ops.reduce_sum(math_ops.square(v)))
    return math_ops.reduce_sum(
        normed_v * math_ops.tanh(keys + processed_query + b), [2])
  else:
    # keys shape: [batch_size, maxlen, num_units]
    # processed_query shape: [batch_size, 1, num_units]
    # 返回值shape: [batch_size, maxlen],unnormalized
    return math_ops.reduce_sum(v * math_ops.tanh(keys + processed_query), [2])

4 - Decoder简单应用:

cells=[rnn.LSTMCell(cell_size) for i in range(num_layers)]
mutli_cells = rnn.MultiRNNCell(cells)

attention_mechanism = BahdanauAttention(num_units,
                                        memory=context,
                                        memory_sequence_length=None,
                                        normalize=False,
                                        probability_fn=None,
                                        score_mask_value=float("-inf"),
                                        name="BahdanauAttention")

decoder_cell = AttentionWrapper(cell=mutli_cells,
                                attention_mechanism=attention_mechanism,
                                attention_layer_size=None,
                                alignment_history=True,
                                output_attention=False,
                                cell_input_fn=None)

state = decoder_cell.zeros_state(batch_size, tf.float32)
with tf.variable_scope(SCOPE, reuse=tf.AUTO_REUSE):
    for i in range(decode_time_steps):
        cell_output, state=decoder_cell(decoder_inputs, state)

References:

    [1] deeplearning.ai Course 5

    [2] https://blog.csdn.net/qsczse943062710/article/details/79539005

    [3] https://xueqiu.com/3426965578/88758188

    [4] https://www.cnblogs.com/robert-dlut/p/5952032.html


版权声明:本文为博主原创文章,未经博主允许不得转载。https://blog.csdn.net/xxl98330/article/details/79818140

展开阅读全文

没有更多推荐了,返回首页