稳定婚姻匹配 G-S算法 JAVA和C++实现

本文介绍了稳定婚姻匹配问题,包括问题要求、JAVA及C++的实现。通过书中的伪代码转化为实际代码,虽然逻辑不复杂,但需要注意循环和数据结构的选择,如使用栈来提高效率。作者认为JAVA实现部分可以进一步精简优化。

稳定婚姻匹配问题

要求

输入:

(第一行数据表示 Man(Woman)的数目 n;接下来的数据中,第一个 n*n 的数据
块表示 Man 的优先列表;另一个 n*n 的数据块表示 Woman 的优先列表)
5 ———————- (Man(Woman)的数目 n)
2 1 4 5 3 ————– (第一个男人的优先列表)
4 2 1 3 5
2 5 3 4 1 ————– (第三个男人的优先列表)
1 4 3 2 5
2 4 1 5 3
5 1 2 4 3 ————– (第一个女人的优先列表)
3 2 4 1 5
2 3 4 5 1
1 5 4 3 2
4 2 5 3 1

输出

男人 1 到 n 的匹配对象,每个数字后边跟一个空格,最后输出一个\n。

JAVA实现

package gs;

import java.util.Arrays;
import java.util.Scanner;

public class gsalg {

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int num = sc.nextInt();
        Woman women[] = new Woman[num];
        Man men[]= new Man[num];

//      System.out.println("num= "+num);

        for(int i=0;i<num;i++){

//          System.out.println("输入第 "+(i+1)+"个男人心中的优先顺序");

            int[] a=new int[num];
            for(int j=0;j<num;j++){
                a[j]=sc.nextInt();
            }
            men[i]=new Man();   //必须先初始化
            men[i].setRank(a);

//          System.out.println(Arrays.toString(men[i].rank));
        }

        for(int i=0;i<num;i++){

//          System.out.println("输入第 "+(i+1)+"个女人心中的优先顺序");

            int[] a=new int[num];
            for(int j=0;j<num;j++){
                a[j]=sc.nextInt();
            }
            women[i]=new Woman();   //必须先初始化
            women[i].setRank(a);

//          System.out.println(Arrays.toString(women[i].rank));
        }



        for(int i=0;i<num;i++){
            if(!men[i].isDate()){  //如果i这个男人没有在约会  这个男生是(i+1)号
                int chase =men[i].getRank()[men[i].getBetter()]; //目前最喜欢chase号女生
                System.out.println((i+1)+"号男生目前最喜欢"+chase+"号女生");
                men[i].setBetter(men[i].getBetter()+1); //成功与否都已经向这个女人请求过了
                System.out.println("追求过的数量变为:"+men[i].getBetter());
               if(!women[chase-1].i
<think>我们正在讨论机组排班优化问题。根据用户需求,需要了解机组排班优化的算法实现方案以及IT系统开发。结合之前的引用,我们注意到引用[4]中提到了“机组优化”,这属于机组排班优化的相关领域。同时,引用中提到的智能优化算法(如遗传算法、粒子群算法等)可以应用于此类问题。机组排班优化问题通常是一个复杂的组合优化问题,涉及多个约束条件(如法规要求、员工休息时间、技能匹配等)优化目标(如成本最小化、公平性最大化等)。常见算法:1.数学规划方法:如整数规划、混合整数规划,适用于小规模问题。2.启发式算法:如遗传算法(GA)、模拟退火(SA)、粒子群优化(PSO)等,适用于大规模问题。3.元启发式算法:如蚁群优化(ACO)、禁忌搜索(TS)等。4.约束规划(CP):适用于复杂约束的排班问题。实现方案:1.问题建模:明确约束条件(如连续工作时间限制、休息时间要求、航班衔接等)目标函数(如总成本最小、机组利用率最高等)。2.算法选择:根据问题规模、实时性要求等选择合适算法。对于大规模问题,通常采用启发式或元启发式算法。3.算法实现:使用编程语言(如Python、JavaC++实现算法,或使用优化求解器(如CPLEX、Gurobi)进行求解。4.系统集成:将优化算法集成到IT系统中,通常包括用户界面、数据管理、排班引擎、报告生成等模块。IT系统开发:1.系统架构:通常采用分层架构,包括数据层(存储机组、航班、规则等数据)、服务层(排班优化引擎)表示层(Web界面)。2.技术栈:-后端:Java/Python/C#等,框架如SpringBoot(Java)、Django(Python)。-前端:React,Vue.js, Angular等。-数据库:关系型数据库(如MySQL,PostgreSQL)或NoSQL数据库(如MongoDB)。-优化引擎:可调用数学规划求解器(如CPLEX、Gurobi)或自研算法模块。3.开发流程:需求分析、系统设计、算法实现、系统集成、测试与部署。根据引用[4]中提到的智能优化算法,我们可以考虑采用改进的智能优化算法(如结合了麻雀搜索算法SSA的变分模态分解VMD用于特征提取,但此引用是针对信号分解的,不过SSA作为一种优化算法也可以尝试用于排班优化)或者混合算法来提高求解效率。然而,需要注意的是,机组排班问题具有高度复杂性,实际应用中往往需要结合多种算法,并针对具体业务场景进行定制。相关问题:1.机组排班优化问题通常有哪些约束条件?2.如何评估机组排班优化算法的性能?3.机组排班优化系统在实际部署中面临哪些挑战?</think>### 机组排班优化算法及IT实现方案 #### 一、核心优化算法 1. **数学规划法** - 使用混合整数线性规划(MILP)建模约束条件: $$ \text{min} \sum_{i \in I} \sum_{j \in J} c_{ij}x_{ij} $$ $$ \text{s.t.} \quad \sum_{j \in J} x_{ij} = 1 \quad (\forall i \in I) $$ $$ \sum_{i \in I} x_{ij} \leq b_j \quad (\forall j \in J) $$ 其中 $x_{ij}$ 表示机组 $i$ 分配任务 $j$,$c_{ij}$ 为成本系数,$b_j$ 为任务容量上限。 - **适用场景**:中小规模问题,需商业求解器(如CPLEX/Gurobi)支持[^1]。 2. **智能优化算法** - **遗传算法(GA)**:通过染色体编码(如二进制串表示排班组合),交叉变异操作优化种群。 - **粒子群优化(PSO)**:粒子位置向量表征排班方案,速度更新公式: $$ v_{id}^{k+1} = w v_{id}^k + c_1 r_1 (p_{id} - x_{id}^k) + c_2 r_2 (p_{gd} - x_{id}^k) $$ - **改进方向**:结合模拟退火(SA)避免局部最优,或引入禁忌搜索(TS)增强全局探索能力[^2][^4]。 3. **约束规划(CP)** - 直接处理非线性逻辑约束(如连续工作 ≤ 8小时、强制休息间隔)。 - 优势:灵活表达复杂规则,适合民航等强监管场景[^1]。 #### 二、IT系统实现方案 **系统架构** ```mermaid graph LR A[前端界面] --> B[API网关] B --> C[排班优化引擎] C --> D[规则管理模块] C --> E[数据存储层] E --> F[(MySQL:基础数据)] E --> G[(Redis:实时状态)] ``` **关键技术栈** 1. **优化引擎** - Python/C++ 实现核心算法,调用 OR-Tools 或 SCIP 求解器 - 并行计算框架(如Spark)加速大规模迭代 2. **约束管理** - 规则引擎(Drools)实现动态约束加载 - 支持民航局FAR-121等法规的自动校验 3. **实时交互** - WebSocket 推送排班冲突预警 - 拖拽式UI手动调整方案(React/Vue.js) **开发流程** 1. 需求分析:明确硬约束(法规/安全)与软目标(成本/公平性) 2. 数据建模:构建机组-任务-时间三维关系矩阵 3. 算法选型:小规模用MILP,大规模用混合GA+CP 4. 系统集成:通过REST API对接HR系统获取机组资质数据 5. 效果验证:对比人工排班的成本下降率与约束满足率 #### 三、典型应用场景 1. **航空公司** - 机组疲劳度预测模型(连续飞行 ≤ 12小时) - 突发延误的自动重排班(响应时间 < 5分钟) 2. **医院护士排班** - 平衡夜班次数公平性:$ \text{min} \max_i |N_i - \bar{N}| $ - 动态匹配科室技能需求 3. **工厂多班制** - 考虑设备维护窗口的班组衔接优化 - 产能波动下的弹性人力配置 --- ### 相关问题 1. 机组排班优化中如何处理突发状况(如航班延误或机组病假)? 2. 不同优化算法(MILP/GA/CP)在千级机组规模下的性能对比如何? 3. 如何量化评估排班方案的公平性与机组满意度? [^1]: 数学规划法适合精确求解,但对超大规模问题计算效率有限。 [^2]: 智能算法需设计高效的邻域搜索策略以避免早熟收敛。 [^4]: 混合算法(如GA+CP)能兼顾求解速度与约束满足率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值