UVA - 11426 - GCD - Extreme (II)

题目请点击链接

题解:

大意:给定正整数N,求出G的值。

for(i=1;i<N;i++)
     for(j=i+1;j<=N;j++)
        G+=gcd(i,j);

我们可以,对N素因子分解,然后用得到的素因子去计算所有n的公约数贡献值。

比如,p=3,n=3,  ans+=phi(3)*1;n=3*2, ans+=phi(3)*2;n=3*3, ans+=phi(3)*3.

设一个数组f[],f(i*j)+= phi(i) * j,最后累加

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define N 4000010

using namespace std;

LL euler[N];
LL sum[N];

void getEuler(){//oula函数表
	memset(euler,0,sizeof(euler));
	euler[1]=1;
	for(int i=2;i<=N;++i){
		if(!euler[i]){
			for(int j=i;j<=N;j+=i){
				if(!euler[j])
				    euler[j]=j;
			     euler[j]=euler[j]/i*(i-1);
			}
		}
	}
}
void getSum(){
	for(int i=1;i<=N;++i)
	     for(int j=i*2;j<=N;j+=i)
	         sum[j]+=euler[j/i]*i;
	for(int i=3;i<=N;++i)
	    sum[i]+=sum[i-1];
}
int main(){
	LL n;
	getEuler();
	getSum();
	while(scanf("%lld",&n),n){
	      printf("%lld\n",sum[n]);	
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值