求逆元的三种方法

一、费马小定理求法

费马小定理:对于a是一个整数,p是一个质数,有 a^p - a =k*p
即有 a^p ≡ a(mod p)
即有 a^(p-1) mod p =1 mod p
逆元:a关于p的逆元即a关于p取模的倒数 即 a^-1 mod p就是我们想要求的
所以 由费马小定理两边同乘 a^-1
得 a^(p-2) mod p = a的-1次方 mod p,因此a ^ (p-2) mod p就是所求的a关于p的逆元
运用快速幂求解
快速幂基本思路:对于a的b次方,我们都可以把b分为几个2的次方相乘的形式,如2^5= 2 ^(2 ^2) * 2 ^(2 ^0)。

ll pow_mod(ll a,ll b,ll p)
{
  		ll ret=1;
  		while(b) //若求2的五次方,则将b看乘是个二进制数,即101.
  		{
  		if(b&1) ret=ret*a%p;//对于该二进制数,若最后一位是1,则表示此时的a是分割b的其中一个2的次方
  		a=a*a%p;//不管最后一位是否为1,都要执行此步,按照二进制数规则2的次方
  		b=b>>1;//然后再看下一位数。
  		}
  		return ret;
}

主函数中只需要

pow_mod(a,p-2,p);

二、扩展欧几里得求法

int exgcd(int a,int b,int &x,int &y)
{
    if(!b)
    {
        x=1;
        y=0;
        return a;
    }
    int d=exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-(a/b)*y;
    return d;
}
int inv(int a,int p)
{
	int x,y;
	int d=exgcd(a,p,x,y);
	if(d==1)
	return (x%p+x)%p;
	else
	return -1;
}

主函数中只需要写

inv(a,b);//即得到a关于b的逆元

三、求递推记忆求多个逆元

如求1~n中所有的数关于m的逆元

long long inv[maxn];
void init(long long n,long long p)
{
	inv[1]=1;
	for(int i=2;i<=n;i++)
	{
		inv[i]=(long long)((p-p/i)*inv[p%i]%p);
	}
}

主函数中只需写

init(n,m);
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法,扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(元),其中元是指某个整数关于模数的乘法元素。 下面是我用C语言实现扩展欧几里得算法元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("元不存在\n"); return -1; // 元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理元不存在的情况。最后,通过用户输入需要元的整数`a`和模数`m`,并输出结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

henulmh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值