题目意思是在一个n*m(n,m<=100)的矩形里放任意多个棋子,满足任一行任一列都最多只有2个棋子,求方案数。
考虑用dp,设三维dp[i][j][k],代表枚举到i行,有j列只有1个棋子,k列有2个棋子的方案数,那么放0个棋子的列数就是m-j-k了。
在第i行只能放0,1,2个棋子,那么我们模拟一下,就可以推出dp方程了。
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=105,mod=9999973;
int dp[maxn][maxn][maxn];
int C_2(int x){return (1ll*x*(x-1)/2)%mod;}
int main(){
int n,m,res=0;
scanf("%d%d",&n,&m);
dp[0][0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;k<=m-j;k++){
dp[i][j][k]=dp[i-1][j][k];
if(k){
dp[i][j][k]+=1ll*dp[i-1][j+1][k-1]*(j+1)%mod;
dp[i][j][k]+=1ll*dp[i-1][j][k-1]*(m-j-k+1)*j%mod;
if(k>=2)dp[i][j][k]+=1ll*dp[i-1][j+2][k-2]*C_2(j+2)%mod;
}if(j){
dp[i][j][k]+=1ll*dp[i-1][j-1][k]*(m-j-k+1)%mod;
if(j>=2)dp[i][j][k]+=1ll*dp[i-1][j-2][k]*C_2(m-j-k+2)%mod;
}dp[i][j][k]%=mod;
}
for(int j=0;j<=m;j++)
for(int k=0;k<=m-j;k++)
res+=dp[n][j][k],res%=mod;
printf("%d\n",res);
return 0;
}