AHOI2009中国象棋--巧妙dp

题目意思是在一个n*m(n,m<=100)的矩形里放任意多个棋子,满足任一行任一列都最多只有2个棋子,求方案数。

考虑用dp,设三维dp[i][j][k],代表枚举到i行,有j列只有1个棋子,k列有2个棋子的方案数,那么放0个棋子的列数就是m-j-k了。

在第i行只能放0,1,2个棋子,那么我们模拟一下,就可以推出dp方程了。

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=105,mod=9999973;
int dp[maxn][maxn][maxn];
int C_2(int x){return (1ll*x*(x-1)/2)%mod;}
int main(){
	int n,m,res=0;
	scanf("%d%d",&n,&m);
	dp[0][0][0]=1;
	for(int i=1;i<=n;i++)
		for(int j=0;j<=m;j++)
			for(int k=0;k<=m-j;k++){
				dp[i][j][k]=dp[i-1][j][k];
				if(k){
					dp[i][j][k]+=1ll*dp[i-1][j+1][k-1]*(j+1)%mod;
					dp[i][j][k]+=1ll*dp[i-1][j][k-1]*(m-j-k+1)*j%mod;
					if(k>=2)dp[i][j][k]+=1ll*dp[i-1][j+2][k-2]*C_2(j+2)%mod;
				}if(j){
					dp[i][j][k]+=1ll*dp[i-1][j-1][k]*(m-j-k+1)%mod;
					if(j>=2)dp[i][j][k]+=1ll*dp[i-1][j-2][k]*C_2(m-j-k+2)%mod;
				}dp[i][j][k]%=mod;
			}
	for(int j=0;j<=m;j++)
		for(int k=0;k<=m-j;k++)
			res+=dp[n][j][k],res%=mod;
	printf("%d\n",res);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值