* [AHOI2009]中国象棋*
题目描述
这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!
输入输出格式
输入格式:
一行包含两个整数N,M,之间由一个空格隔开。
输出格式:
总共的方案数,由于该值可能很大,只需给出方案数模9999973的结果。
输入输出样例
输入样例#1: 1 3
输出样例#1:7
样例说明
除了3个格子里都塞满了炮以外,其它方案都是可行的,所以一共有2*2*2-1=7种方案。
数据范围
100%的数据中N和M均不超过100
50%的数据中N和M至少有一个数不超过8
30%的数据中N和M均不超过6
emm……此题做法我们简称为“猥琐使用乘法原理和加法原理”,嘿嘿嘿。
神奇。
PS.自定义函数C(x)的部分,用define写会迷之WA掉……
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define ll long long
const int N=101;const int MO=9999973;
ll dp[N][N][N];int n,m;
int C(int x) {return (x*(x-1)/2);}
/*
巧妙dp:
dp[i][j][k]表示:
放了前i行,有j列有1个棋子,有k列有两个棋子
转移方程见代码
此方法易懂却不好想到
*/
#if 0
Writers: Goes && G.S.M.
锐意进取;
#endif
int main()
{
scanf("%d%d",&n,&m);dp[0][0][0]=1;
for(int i=0;i<n;i++)
for(int j=0;j<=m;j++)
for(int k=0;j+k<=m;k++)
if(dp[i][j][k]){
dp[i+1][j][k]=(dp[i+1][j][k]+dp[i][j][k])% MO;
//第i+1行不放
if(m-j-k>=1)//第i+1行放一个在没有棋子的那一列
dp[i+1][j+1][k] =
( dp[i+1][j+1][k] + dp[i][j][k]*(m-j-k) ) % MO;
if(j>=1)//放一个在之前有一个的那一列
dp[i+1][j-1][k+1]=
( dp[i+1][j-1][k+1] + dp[i][j][k]*j ) % MO;
if(m-j-k>=2)//放两个在都没有棋子的两列
dp[i+1][j+2][k] =
( dp[i+1][j+2][k] + dp[i][j][k]*C(m-j-k) ) % MO;
if(m-j-k>=1&&j>=1)//两个分别有1和0个的列
dp[i+1][j][k+1] =
( dp[i+1][j][k+1] + dp[i][j][k]*(m-j-k)*j ) % MO;
if(j>=2)//都放在有一个的列
dp[i+1][j-2][k+2] =
( dp[i+1][j-2][k+2] + dp[i][j][k]*C(j) ) % MO;
}ll ans=0;
for(int i=0;i<=m;i++)
for(int j=0;i+j<=m;j++)
ans=(ans+dp[n][i][j])%MO;
printf("%lld\n",ans);return 0;
}