
傅里叶变换
文章平均质量分 94
本专栏Part1到Part5是主要参考b站up主DR_CAN的视频学习而来,其余部分为自己的扩充。内容主要涵盖傅里叶级数、连续傅里叶变换/逆变换、离散傅里叶变换/逆变换、快速傅里叶变换非常仔细的推导,再结合MatLAB分析傅里叶变换的性质。非常适合数学功底较差,基础薄弱者学习。
江湖上都叫我秋博
这个作者很懒,什么都没留下…
展开
-
傅里叶级数与傅里叶变换_Part7_离散傅里叶变换的性质
离散傅里叶变换/逆变换的公式如下:X(n)=∑k=0N−1x(k)e−in2πkNX\left( n \right) = \sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}}X(n)=k=0∑N−1x(k)e−inN2πkx(m)=1N∑n=0N−1[X(n)⋅ein2πmN]x\left( m \right) = \frac{1}{N}\sum\limits_{n = 0}^{N - 1} {\left原创 2022-07-20 13:35:26 · 873 阅读 · 0 评论 -
傅里叶级数与傅里叶变换_Part6_离散傅里叶变换推导
参考链接:傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式对于周期为TTT,即f(t)=f(t+T)f\left( t \right) = f\left( {t + T} \right)f(t)=f(t+T)的函数,它的傅里叶级数的复数展开形式如下:f(t)=∑n=−∞∞cneinωtf\left( t \right) = \sum\limits_{n = - \infty }^\infty {{c_n}{e^{in\omega t}}}f(t)=n=−∞∑∞cneinωt, 其中,cn=1原创 2022-07-20 10:59:14 · 662 阅读 · 0 评论 -
傅里叶级数与傅里叶变换_Part5_傅里叶级数推导傅里叶变换
对于周期为T,即f(t)=f(t+T)f(t)=n=−∞∑∞cneinωt,其中,cn=T1∫0Tf(t)e−inωtdt重写一下fT(t)=n=−∞∑∞cneinω0t(1),ω0=T2π为角频率。cn=T1∫0TfT(t)e−inω0tdt=T1。原创 2022-07-19 16:37:56 · 696 阅读 · 0 评论 -
傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式
参考链接对于周期为T,即f(t)=f(t+T)f(t)=2a0+n=1∑∞ancosnωt+n=1∑∞bnsinnωta0=T2∫0Tf(t)dtan=T2∫0Tf(t)cosnωtdtbn=T2∫0Tf(t)sinnωtdt【在工程当中,由于时间是t≥0t。原创 2022-07-19 16:07:52 · 1343 阅读 · 0 评论 -
傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数
对于周期为 T=2πT = 2\piT=2π周期函数,即f(x)=f(x+2π)f\left( x \right) = f\left( {x + 2\pi } \right)f(x)=f(x+2π) ,它的傅里叶级数展开形式如下:f(x)=a02+∑n=1∞ancosnx+∑n=1∞bnsinnxf\left( x \right) = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {{a_n}\cos nx} + \sum\limits_{n = 1原创 2022-07-19 15:23:06 · 2006 阅读 · 0 评论 -
傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数
参考链接:傅里叶级数与傅里叶变换_Part1_三角函数系的正交性三角函数系{sin0x=0,cos0x=1,sinx,cosx,sin2x,cos2x,⋯ ,sinnx,cosnx,⋯ ,⋯}\left\{ {\sin 0x = 0,\cos 0x = 1,\sin x,\cos x,\sin 2x,\cos 2x, \cdots ,\sin nx,\cos nx, \cdots , \cdots } \right\}{sin0x=0,cos0x=1,sinx,cosx,sin2x,cos原创 2022-07-19 14:26:21 · 1253 阅读 · 1 评论 -
傅里叶级数与傅里叶变换_Part1_三角函数系的正交性
参考链接:傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明三角函数的和差公式如下sin(α+β)=sin(α)cos(β)+cos(α)sin(β)(1)sin(α−β)=sin(α)cos(β)−cos(α)sin(β)(2)cos(α+β)=cos(α)cos(β)−sin(α)sin(β)(3)cos(α−β)=cos(α)cos(β)+sin(α)sin(β)(4)\begin{array}{l}\sin \left( {\alph原创 2022-07-19 11:28:46 · 2339 阅读 · 0 评论 -
傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明
欧拉公式: eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \thetaeiθ=cosθ+isinθ , 其中,i=−1i = \sqrt { - 1}i=−1欧拉公式在控制理论和动态系统分析当中,起到了非常重要的作用。下面用一种简单的方式证明一下欧拉公式。证明:设函数: f(θ)=eiθcosθ+isinθf\left( \theta \right) = \frac{{{e^{i\theta }}}}{{\cos \thet原创 2022-07-19 10:39:22 · 2338 阅读 · 0 评论