
滤波算法
文章平均质量分 90
江湖上都叫我秋博
这个作者很懒,什么都没留下…
展开
-
滤波算法_无迹卡尔曼滤波(UKF, Unscented Kalman filter)_递归滤波过程_Part2
本文是的延续。理论学习基本结束,下面给出递归滤波公式。正如前文所述论文[1]中对SKF递归滤波的数学描述方式, EKF和UKF是可以直接套用这种数学描述方式,而不必采用求解最小化估计误差协方差矩阵的迹的卡尔曼增益的推导方式。原创 2022-09-28 12:58:53 · 628 阅读 · 0 评论 -
滤波算法_无迹卡尔曼滤波(UKF, Unscented Kalman filter)_数学推导+论文阅读理解_Part1
本文继续学习Kalman滤波在非线性系统上另一种扩展方法无迹卡尔曼滤波(UKF),主要参考提出UKF的作者写两篇论文:[1] Julier S J, Uhlmann J K. New extension of the Kalman filter to nonlinear systems[C]//Signal processing, sensor fusion, and target recognition VI. Spie, 1997, 3068: 182-193.[2] Julier S, Uhlma原创 2022-09-28 11:38:19 · 1982 阅读 · 2 评论 -
滤波算法_扩展卡尔曼滤波(EKF, Extended Kalman filter)_全网最详细的数学推导_Part1
本文提供全网最详细的扩展卡尔曼滤波的全部数学推导。由于推导公式很多,CSDN嫌我的文章太长了,所以我分成了Part1和Part2。对于线性系统,{xk=Axk−1+Buk+wk−1zk=Hxk+vk\left\{ \begin{array}{l}{{\bf{x}}_k}{\bf{ = A}}{{\bf{x}}_{k - 1}}{\bf{ + B}}{{\bf{u}}_{\bf{k}}}{\bf{ + }}{{\bf{w}}_{k - 1}}\\\\{{\bf{z}}_k}{\bf{ = H}}{{\b原创 2022-09-09 16:02:58 · 2719 阅读 · 0 评论 -
滤波算法_扩展卡尔曼滤波(EKF, Extended Kalman filter)_全网最详细的数学推导_Part2
回顾标准卡尔曼滤波中 模型估计和测量估计进行数据融合的方程(后验估计方程):x^k=x^k−+Kk(zk−Hx^k−){\mathbf{\hat x}}_k^{} = {\mathbf{\hat x}}_k^ - + {K_k}\left( {{{\mathbf{z}}_k} - {\mathbf{H\hat x}}_k^ - } \right)x^k=x^k−+Kk(zk−Hx^k−)类似地:扩展卡尔曼滤波的后验估计方程定义如下:x^k≜x^k−+Kk(zk−h(x^k−,0))=x^k−原创 2022-09-09 15:57:09 · 1558 阅读 · 1 评论 -
滤波算法_标准卡尔曼滤波(SKF, Standard Kalman filter)_①基础铺垫
学习卡尔曼滤波不能一蹴而就,特别是对于基础薄弱者而言,需要一步一步来,在推导kalman滤波算法之前,需要学习一些基础知识作为铺垫。卡尔曼滤波,它本质上是一种最优的递归的数字处理算法。卡尔曼滤波器的应用非常广泛,这是因为在实际的系统当中,存在许多的不确定性,主要包含以下三个方面:① 不存在完美的数学模型② 系统的扰动不可控,也很难建模③ 测量传感器存在误差例子: 找不同的人测量一个硬币的直径(测量的人不同,尺子存在误差)测量结果:zk{z_k}zk表示第k次的测量结果。此时,如果我们要去估计真原创 2022-09-07 23:06:28 · 798 阅读 · 0 评论 -
滤波算法_标准卡尔曼滤波(SKF, Standard Kalman filter)_②详细数学推导
假设一个线性系统的离散状态空间方程如下:{xk=Axk−1+Buk+wk−1zk=Hxk+vk\left\{ \begin{array}{l}{{\bf{x}}_k}{\bf{ = A}}{{\bf{x}}_{k - 1}}{\bf{ + B}}{{\bf{u}}_{\bf{k}}}{\bf{ + }}{{\bf{w}}_{k - 1}}\\\\{{\bf{z}}_k}{\bf{ = H}}{{\bf{x}}_k}{\bf{ + }}{{\bf{v}}_k}\end{array} \right.⎩原创 2022-09-07 16:32:45 · 497 阅读 · 0 评论