少切换、多产出:llm-search → AntV 一气呵成,报告即刻导出

部署运行你感兴趣的模型镜像

TL;DR
MCPHub 上用 浏览器即可运行 的工作流 llm-search → AntV → 导出,把一个研究型 Prompt 直接变成「可视化图表 + 迷你报告」。零本地配置、零复制粘贴
立即试用: https://chat.mcphub.com

工作流的亮点

  • 浏览器运行:无需本地安装与环境配置。

  • 多语种权威来源:llm-search 支持 英文+中文主流媒体评测,并可开启 crawl 拉取文章正文,抽取结构化数据。

  • 自动归一化:把不同媒体的打分与表述统一到 0–100 量表。

  • 冲突消解:按 时效性(最新优先)+ 来源可信度 自动合并,剔除离群值

  • 一键可视化:AntV 生成 雷达图(若某指标数据稀疏自动回退为柱状图)。

  • 可溯源:输出 图表 URL、Top 5 来源链接,附 方法与局限 简述,确保透明与可复现。

  • 一键导出:成品报告支持 Markdown,图表可下载 PNG

传统「研究 → 画图」往往来回切工具、手动搬运数据。借助 MCP 服务器,模型能自动编排整条链路:
搜索 → 归一化 → 可视化 → 文字叙述 → 导出。流程可复用、易分享,也方便沉淀为团队模板。

工作流具体运行流程

  • Search & Structure(检索与结构化)llm-search 返回规范化的数据行(例如 vendor、mentions、date、source),并可抓取正文做字段抽取。

  • Visualize(可视化)AntV MCP 将数据行转为图表

  • Report(报告生成)MCPHub 汇总要点、添加引用并内嵌图表,可一键导出 Markdown

Demo

浏览器 中运行以下工作流,把一个对比评测 Prompt 转换为 0–100 归一化数据 + 雷达图/柱状图 + 报告

在线报告示例https://mcp.edgeone.site/share/7G8ZzVlQyTDrXR00HPYLT

加入 Discord 社区

有问题、想提新工具、或想展示你的工作流?欢迎加入官方 Discord,一起讨论与共建:

  • 社区与开发者的直接帮助

  • 反馈建议,参与塑造 MCPHub 的未来

  • 看看大家在做什么,获取灵感

  • 第一时间获知新功能与新工具支持

加入讨论: https://discord.gg/eV3ZpQ3x

立刻上手

前往 mcphub.com,选择可用服务器,然后按需使用 InspectorOnline Client

  • Inspector:纯工具测试——适合逐步校验并截取输出/截图

  • Online Client:在对话中直接调用工具,由模型生成最终报告

技术细节

  • Servers: llm-search(搜索/归一化)、antvis(图表)

  • Client: MCPHub(浏览器 UI)

  • Outputs: 图表图片、图表 spec、以及干净的 MD/PDF 报告

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

### 关于LLM-QAT的研究背景 大型语言模型(LLMs)由于其庞大的参数量,在实际部署过程中面临计算资源消耗巨大的挑战。为了降低这些模型的推理成本并提高效率,研究者们提出了种优化技术,其中包括量化感知训练(Quantization Aware Training, QAT)。对于特定领域内的应用——即针对大规模预训练的语言模型实施QAT,则通常被称为LLM-QAT。 ### LLM-QAT开山之作及其贡献 一篇具有里程碑意义的工作是由Hawkins et al.发表的一篇论文《Generalized Quantization for Efficient Transformer Inference》[^1]。该研究表明通过引入模拟量化误差到训练过程中的方式来调整权重更新规则,可以在不影响原始精度的前提下显著减模型大小和加速推断速度。此方法不仅适用于小型网络结构,同样能够有效应用于复杂的Transformer架构之上。 ### 实现细节和技术要点 在这项工作中提出的实现方案主要包括以下几个方面: - **伪量化操作**:在网络前向传播阶段加入额外节点用于执行浮点数至整数表示形式之间的转换;而在反向传播时则忽略这部分影响以保持梯度流稳定。 ```python import torch.nn as nn class FakeQuantize(nn.Module): def __init__(self, quant_min=-128, quant_max=127): super().__init__() self.quant_min = quant_min self.quant_max = quant_max def forward(self, x): scale = (self.quant_max - self.quant_min) / (x.max() - x.min()) zero_point = int(-scale * x.min().item()) + self.quant_min qx = ((x / scale).round_() + zero_point).clamp_(self.quant_min, self.quant_max) return (qx - **自适应缩放因子与零点偏移**:根据不同层或通道特性动态设定最佳映射范围,从而使得整个系统的数值分布更加均匀合理。 - **混合精度策略**:允许部分敏感组件保留较高分辨率的同时对其它非关键路径采用较低位宽表达,以此达到性能最优配置目的。 上述措施共同作用下实现了对原有模型的有效压缩而不损失过预测准确性,为后续更深入探索奠定了坚实基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值