Elasticsearch:在搜索引擎中如何实现完全匹配(内容精确匹配)查询

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/kexinmei/article/details/47979013

本文地址:

http://blog.csdn.net/hereiskxm/article/details/47979013


在有搜索引擎之前,我们查文档常使用顺序匹配。我们需要在文档中顺序扫描,找到完全匹配的子句。

有的情况精确匹配比搜索引擎的查找有优势,比如这样的内容”chinese:1388838245“,如果用户输入”883“希望搜到这则内容,在常规的情况下是搜不到的。

这是因为在有了搜索引擎后,我们对查询语句做的处理就不一样了。我们通常会先分词,然后查找对应的词条索引,最后得到评分由高到低的文档列表。上面的例句在常规的分词情况下,没有也不可能有”883“这个词条,因此搜索不到这则内容。

我一度以为没法实现完全匹配了,直到一个硬需求的出现。花了一天时间,把完全匹配用搜索引擎的思维整理出来。


简要描述实现思路,字段按一字一词的形式分词,再利用短语查询来搜索


ES中,可以实现一字一词的的分词器是NGram。

Ngram分词的官方文档地址: https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenizer.html

它其实是一个上下文相连续字符的分词工具,可以看官方文档中的例子。当我们将它 min_grammax_gram 都设为1时,它会按一字一词的形式分词。比如“shinyke@189.cn”,分词的结果是["s" , "h" , "i" , "n" , "y" , "k" , "e" , "@" , "1" , "8" , "9" , "." , "c" , "n" ]。


<pre name="code" class="javascript">/index_name/  
{
  "settings": {
    "analysis": {
      "analyzer": { 
        "charSplit": {
	      "type": "custom",
              "tokenizer": "ngram_tokenizer"
	    }
	  },
	 "tokenizer": {
           "ngram_tokenizer": {
             "type": "nGram",
             "min_gram": "1",
             "max_gram": "1",
             "token_chars": [
               "letter",
               "digit",
               "punctuation"
             ]
           }
        }
      }
   }
}

以上语句中,构建了一个名为“charSplit”的分析器。它使用一个名为“ngram_tokenizer”的Ngram分词器。

可以用如下语句测试charSplit分析器,可以看到一字一词的效果:

curl -POST http://IP:port/{index_name}/_analyze?pretty&analyzer=charSplit
"测试语句"

把这个分析器在mapping里用起来:

     ... 
     "sender": {
        "type": "string",
        "store": "yes",
        "analyzer": "charSplit",
        "fields": {
          "raw": {
            "type": "string",
            "index": "not_analyzed"
          }
        },
       ...



接下来就可以用match_phrase来实现完全匹配查询

/{index_name}/{type_name}/_search
{
  "query": {
    "multi_match": {
      "query": "@189.cn",
      "type": "phrase", //type指定为phrase
      "slop": 0,        //slop指定每个相邻词之间允许相隔多远。此处设置为0,以实现完全匹配。
      "fields": [
        "sender"
      ],
      "analyzer": "charSplit", //分析器指定为charSplit
      "max_expansions": 1      
    }
  },
  "highlight": {   //测试高亮是否正常
    "pre_tags": [
      "<b>"
    ],
    "post_tags": [
      "</b>"
    ],
    "fragment_size": 100,
    "number_of_fragments": 2,
    "require_field_match": true,
    "fields": {
      "sender": {}
    }
  }
}
phrase查询原始的作用是用来做短语查询,它有一个重要的特点:有顺序。我们利用了它匹配的有序性,限制slop为0,则可实现完全匹配查询。

以上语句返回的结果是:

{

    "took": 18,
    "timed_out": false,
    "_shards": {
        "total": 9,
        "successful": 9,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 0.40239456,
        "hits": [
            {
                "_index": "index_name",
                "_type": "type_name",
                "_id": "AU9OLIGOZN4dLecgyoKp",
                "_score": 0.40239456,
                "_source": {
                    "sender": "18977314000 <18977314000@189.cn>, 李X <18977314000@189.cn>, 秦X <18977314000@189.cn>, 刘X <18977314000@189.cn>"
                },
                "highlight": {
                    "sender": [
                        "18977314000 <18977314000<b>@</b><b>1</b><b>8</b><b>9</b><b>.</b><b>c</b><b>n</b>>, 李X <18977314000<b>@</b><b>1</b><b>8</b><b>9</b><b>.</b><b>c</b><b>n</b>>, 秦纯X <18977314000<b>@</b><b>1</b><b>8</b><b>9</b><b>.</b><b>c</b><b>n</b>>, 刘X <189773140"
                    ] 
               }
            }
        ]
    }

}

到此,就实现了完全匹配查询。实际环境中用NGram做一字一词分析器的时候会更细致一些,比如有一些字符需要用stop word过滤掉。这些细节可以根据实际需要在构造分析器时添加filter实现,在此不做赘述。


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页